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We consider a variant of the berth allocation problem —i.e., the multi-port berth allocation problem—aimed

at assigning berthing times and positions to vessels in container terminals. This variant involves optimizing

vessel travel speeds between multiple ports, thereby exploiting the potentials of a collaboration between

carriers (shipping lines) and terminal operators. Using a graph representation of the problem, we reformulate

an existing mixed-integer problem into a generalized set partitioning problem, in which each variable refers

to a sequence of feasible berths in the ports that the vessel visits. By integrating column generation and cut

separation in a branch-and-cut-and-price procedure, our proposed method is able to outperform commercial

solvers in a set of benchmark instances and adapt better to larger instances. In addition, we apply cooperative

game theory methods to efficiently distribute the savings resulting from a potential collaboration and show

that both carriers and terminal operators would benefit from collaborating.
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Optimization, Cooperative game theory

1. Introduction

The International Maritime Organization (IMO), in its fourth climate report (IMO 2020), reflects

on the increase in shipping’s CO2 emissions in the recent years. In the period 2012-2018 the

shipping’s total emissions have increased by 9.6%. This alarming trend highlights the need for

pursuing the strategies that the IMO adopted in 2018 for reducing greenhouse gas (GHG) emissions

from ships (IMO 2018). The aim is to reduce total emissions from shipping by 50% in 2050, and to

reduce the average carbon intensity by 40% in 2030 and 70% in 2050, compared to 2008. Yet world

maritime trade keeps growing at an annual average of 3% reaching a record high of 11 billion tons

of total volume in 2018 —a number that translates into almost 800 million twenty-foot equivalent

units (TEUs) handled in container ports worldwide (UNCTAD 2019). Given that trade volume has

1



Martin-Iradi, Pacino, and Ropke: The multi-port berth allocation problem with speed optimization
2 Article submitted to ; manuscript no.

steadily increased since then, the need for more efficient and sustainable operations in maritime

transport logistics is essential (Bektaş et al. 2019).

From the terminal viewpoint, the growth in container trade involves more or larger vessels

arriving at ports, in need of berthing. One solution to satisfying the increasing demand is to extend

the existing quay. The problem is that doing so usually requires an expensive investment and

sometimes may not even be physically feasible. An alternative strategy is to improve the efficiency

of existing resources through optimization techniques that do not entail costly investment.

The berth planning of a terminal can be modelled mathematically as the Berth Allocation Prob-

lem (BAP). In the BAP, the aim is to assign incoming ships to berthing positions along the terminal.

Steenken, Voß, and Stahlbock (2004) define this problem as highly critical within container con-

tainer terminal planning logistics, due to the scarcity of berthing space. Figure 1 illustrates the

Figure 1 Example solution of the BAP for a port terminal with four vessels.

problem in a two-dimensional diagram where one dimension is space (quay length), and the other

one is time (the planning horizon). We depict each ship as a rectangle whose dimensions are the

ship length and handling time, the time the ship spends at the berth (i.e., during unloading and

loading) Each ship usually has a fixed time window defined by its expected start and finish time.

Although ships can arrive before their berthing time, they will need to wait at the port. Similarly,

ships can be allowed to exceed the expected finish time incurring in a delay. We denote the entire

time that the ship spends at the port (i.e waiting time plus berthing period) as the ”service time.”

Any non-overlapping positioning of the ship rectangles within the decision space defines a feasible

solution for the BAP.
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We can classify the BAP variants according to how the berths are distributed along the quay.

In the discrete BAP, we divide the quay into a discrete set of berths, with only one ship allowed

to one berth at a time, whereas in the continuous BAP, the ships can berth anywhere along the

quay as long as they maintain a safe distance from the other ships. Moreover, the BAP can be

either static or dynamic. In the static variant, we assume that all ships are at the port when the

berth planning is done, whereas in the dynamic version, we assume that ships can arrive while the

planning is in process.

The efficient planning of a terminal requires the vessels to abide by their schedules. Thus, efficient

vessel scheduling is also a critical aspect, not only for the carriers, but also for the terminal

operators. The design of vessel schedules can be modeled mathematically as the Vessel Scheduling

Problem (VSP). The VSP aims at determining the sailing speeds between consecutive ports in the

route (i.e., voyage legs) in order to optimize the vessels’ fuel consumption and turnaround time at

port and the number of vessels required to operate the route with a given frequency.

Both the increasing volume of container trade and the up-sizing of the vessels have led to

increased competition among container terminals. each vying to become the port of call for more

vessels (Notteboom et al. 2017). As a result, most terminals are reticent to share information with

other terminals and prefer to plan their operations independently. Terminals commonly plan berth

allocation based on ship schedules. Nevertheless, these schedules are subject to a level of uncer-

tainty, because different types of disruptions—such as weather conditions or technical problems at

the terminal—can alter the schedules and result in delays. When each terminal does its planning

independently, a delay in one terminal can potentially be propagated through the shipping ser-

vice to other ports (Notteboom and Vernimmen 2009) or incur higher fuel costs for the carriers

(shipping lines) if they need to increase the vessel’s speed to make up for lost time. For example,

a vessel stopping in ports A and B may encounter a congested terminal when arriving at port A

and become delayed. The carrier can then order the vessel to either speed up to arrive at port B

on time, entailing higher fuel consumption, or arrive late at port B, forcing the terminal to modify

its berthing plan.

A potential solution to avoid this type of scenario is to establish some form of collaboration

between players in the maritime industry. Collaboration can be established not only between same

type of stakeholders (i.e., between multiple carriers) but also between more players (i.e., carriers

and terminal operators). The World Shipping Council (2015) encourages terminals to establish

collaborative agreements with carriers as one of the main ways of reducing port congestion and

improving planning efficiency.

A certain degree of collaboration is assumed in the VSP, however, the problem does not explicitly

consider the berth allocation at the terminal and this can lead to a significant increase in service
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time. Therefore, integrating the BAP together with the scheduling of the vessels becomes relevant.

Sharing information allows planners to simultaneously plan the berthing at the terminals and be

able to minimize disruptions and reduce costs and emissions. Recent studies show that collaboration

between carriers and terminals can lead to significant benefits for both (Dulebenets et al. 2019). This

is the goal of the Multi-Port Berth Allocation Problem (MPBAP), first introduced by Venturini

et al. (2017), which simultaneously plans the berth allocation of multiple ports taking into account

the vessels’ speed.

The MPBAP can either be applied either when one company controls both vessels and terminals,

or by a third-party service provider which works as an orchestrator. An example of the former

is Maersk, owning both the carrier Maersk Line (Maersk 2021) and the terminal operator APM

Terminals (APM Terminals 2021).

At present, there are companies in the market that offer optimization-based planning software

separately to carriers and terminal operators (Portchain 2021, Navis 2021, Sealytix 2021, TGI 2021,

RBS 2021). Such companies already have access to all the necessary data for the MPBAP, which

makes them excellent candidates to orchestrate the collaboration. Since both carriers and terminals

are already sharing data with those companies, trust issues should be minimal, but customers

should of course be free to decline that their data is used in a joint optimization problem. The

amount of flexibility that terminals and carriers are willing to commit to the collaboration, can

easily be modeled with the time windows, making the MPBAP if not an operational tool, at least

a tool to identify the potential savings.

To make the service attractive to customers, the software company needs to show that the

collaboration is beneficial for all involved parties. Therefore, we apply cooperative game theory

to demonstrate that the total costs in the MPBAP solution can be shared in a favorable way.

Using this service only requires that participating carriers and terminal operators allow the third

party to jointly use their data but does not entail sharing additional data or the disclosure of the

customer’s data to other customers. Once the operations conclude, the third party would be in

charge of returning the savings according to the initial calculations.

Similar collaboration mechanisms have also been studied in the road transportation sector.

Ergun, Kuyzu, and Savelsbergh (2007) study collaborative logistics in truck transportation where

part of the carriers’ savings are returned to the shippers. Özener, Ergun, and Savelsbergh (2011)

also propose collaborative models where players receive more favorable rates in return. In fact, they

indicate that a centralized decision-maker with complete information about all participants would

be ideal for collaborative models to work. However, in their study, Özener, Ergun, and Savelsbergh

(2011) suggest that, due to lack of trust, players may not be willing to share additional information
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and therefore, they explore different mechanisms. Fortunately, this lack of trust is minimized in

our case as the players already share the required information with the third party.

In studying the MPBAP, this paper makes four contributions. First, we present two new for-

mulations for the MPBAP, based on a graph representation. Second, we propose exact methods

based on column generation, together with branching, cutting, and symmetry-breaking enhance-

ments. Third, we demonstrate the quality of our method by comparing it to a commercial solver

and testing it through both a set of benchmark instances from a previous study and a new set

of harder instances. Fourth, to demonstrate the benefits for both carriers and terminal operators

in a scenario of a joint grand coalition, we apply cost allocation methods from cooperative game

theory.

The structure of this paper is as follows. Section 2 reviews the state-of-the-art studies on berth

allocation, speed optimization and collaboration on the shipping industry. Section 3 describes the

MPBAP by presenting two mathematical formulations, together with the one from Venturini et al.

(2017). Section 4 gives our solution method, and Section 5 introduces and discusses the cooperative

game methods used for effectively distributing the costs of a coalition. Section 6 compares the

models’ performance through extensive computational experiments and analyzes the cooperative

game theory results. Section 7 concludes by briefly discussing both the findings and possible future

research directions.

2. Literature review

This section has been divided into three. First, we describe the main studies related to the BAP.

Secondly, we cover the literature concerning speed optimization, and the last part focuses on

collaboration studies within the container shipping industry and literature where cooperative game

theory has been applied to it.

2.1. BAP literature

The berth allocation problem is known to be NP-hard (Lim 1998, Hansen and Oguz 2003) and

has received significant attention in the last two decades. Carlo, Vis, and Roodbergen (2014) and

Bierwirth and Meisel (2015) presented detailed literature surveys on the seaside operations of

container terminals such as the BAP where they emphasized the raising interest on this particular

problem in the last years. Imai et al. (2005) conducted the first study considering a continuous

BAP and Cordeau et al. (2005) studied both the discrete and continuous version of the problem

and solved them through heuristic methods. Guan and Cheung (2005) presented a tree search

exact method that performed better than commercial solvers and an efficient composite heuristic

method. Du et al. (2015) extended the problem to also include the effect of tides and adopted the

virtual arrival policy that is currently used in many terminals worldwide. Cheong et al. (2010)
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considered priorities for each of the vessels. The BAP is optimized using an evolutionary algorithm

that minimizes the make-span, the waiting time and the deviation from a reference schedule.

Buhrkal et al. (2011) compared three different methods for the discrete BAP and showed that a

generalized set-partitioning model outperforms the rest. Saadaoui, Umang, and Frejinger (2015)

reformulated the problem into a set packing problem where variables refer to assignments of ships

to berthing positions and solved it using delayed column generation. In our paper, we combine

the applicability of column generation procedures using a generalized set partitioning problem

formulation. Regarding the discretization of the quay, Kordić et al. (2016) presented a hybrid

variant of the BAP where ships can only berth in a given set of positions. Lalla-Ruiz et al. (2016)

studied how the tides can limit the time available for ships to berth given their draft and the water

depth and solved this variant of the BAP using a generalized set partitioning problem formulation.

The multi-port version of the BAP studied in this paper was first defined by Venturini et al.

(2017). The mixed integer problem formulation they presented is used as a reference for the ones

considered in this paper. Kramer et al. (2019) proposed two new formulations for the discrete

BAP: a time-indexed formulation and an arc-flow formulation that seem to perform better than

the methods from Buhrkal et al. (2011). Corry and Bierwirth (2019) proposed a mixed integer

problem formulation for the BAP with channel-constrained ports where the sequencing of channel

movements is also optimized.

2.2. Speed optimization literature

The relation between vessel speed and fuel consumption is non-linear. Since fuel emissions are

directly proportional to the fuel burnt, optimizing sailing speed becomes relevant from the carrier

and environmental perspective. The policies of the IMO in the last years have raised debate on

which measures to implement regarding speed optimization, speed reduction or slow steaming. In

that aspect, multiple studies have been done analyzing the aspects and impacts of the different

measures. Based on the scenario of slow steaming, Kontovas and Psaraftis (2011) investigated a

berthing policy that aims at reducing the waiting time at port. Psaraftis and Kontovas (2013),

Wang, Meng, and Liu (2013a), Psaraftis and Kontovas (2015a) and Psaraftis and Kontovas (2015b)

presented taxonomies and surveys on speed models in the maritime transportation sector where

the impacts and main trade-offs of slow steaming are analyzed and decision models proposed.

The VSP has speed optimization as its core concept and the interest in this problem has continued

increasing in the last decade (Dulebenets et al. 2019). Fagerholt (2001) presented a mathematical

model for the VSP and solved it using a method based on the set partitioning formulation. Wang,

Wang, and Meng (2014) extended the VSP to also consider cargo allocation and indicated that

carriers should consider the cargo costs arising from additional waiting time at port. Dulebenets
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(2018) proposed a multi-objective model considering the route service costs. The results indicated

that negotiating the port calls and handling rates with the terminal operator could lead to signif-

icant savings. To some extent, the VSP can be seen as a collaborative problem, however, most of

the studies focus on the interests of the carrier. A variant of the VSP where shipping line compa-

nies and terminal operators collaborate has also been studied recently. This variant assumes that

the terminal operator can offer multiple time windows or handling rates to the carrier, instead of

the fixed ones considered in the generic VSP. For instance, the MPBAP presented in Venturini

et al. (2017) can be included in this problem category where the berth allocation planning is also

considered. Dulebenets (2019) presented a mathematical model for the collaborative VSP where

terminals offer both multiple port service time windows and handling rates. The results showed

the benefits of the collaborative agreement on the liner shipping operations.

Environmental aspects have also been addressed in this type of problems. Fagerholt, Laporte,

and Norstad (2010) minimized the fuel consumption by optimizing speeds along a shipping route.

By discretizing the arrival times at each port, the cubic function relating speed and fuel emissions

can be linearized and the problem solved as a shortest path problem. Fagerholt et al. (2015) and

Zhen et al. (2020) extended the route and speed optimization study by also considering emission

control areas (ECAs). Fagerholt et al. (2015) aimed at minimizing the fuel consumption whereas

Zhen et al. (2020) also considered SO2 emissions. Both studies showed that carriers tend to use

slow steaming within ECAs or directly avoid sailing through these areas. Reinhardt et al. (2016)

optimized a liner shipping network by adjusting berthing times with the objective of minimizing fuel

consumption. The speed and routing of multiple vessels is optimized in Wen, Pacino, and Kontovas

(2017) under a unified objective that minimizes transit times, total costs and fuel emissions. They

implemented a branch-and-price heuristic and a constraint programming model which is tested

in a subset of the Mediterranean ports. Du et al. (2011), Du et al. (2015) and Sun et al. (2018)

integrated speed optimization with the BAP by considering that ships still need to sail a certain

distance to arrive at port. The second-order cone programming transformation used by Du et al.

(2011) to approximate the relation between sailing speed and fuel consumption is improved by

quadratic outer approximations in Wang, Meng, and Liu (2013b).

2.3. Collaboration in the shipping industry

The MPBAP introduced by Venturini et al. (2017) can be seen as a problem with a high degree

of collaboration and the study of different collaborative forms in the container shipping industry

has gained interest in recent years. Song (2003) studied competition and co-operation in ports

and coined the term co-opetition. Wang, Liu, and Qu (2015) presented two collaborative methods

between shipping line companies and port operators where the aim is to create a win-win situation
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by balancing the priorities of both parties and encouraging them to share true information. Lalla-

Ruiz, Melián-Batista, and Moreno-Vega (2016) proposed a cooperative search for the discrete BAP

based on a grouping strategy. Individuals are organized into groups where they can only share infor-

mation with other individuals from the same group. Notteboom et al. (2017) investigated alliance

formations in container shipping by studying their strategies when choosing ports. Dulebenets,

Golias, and Mishra (2018) presented the collaborative berth allocation problem (CBAP), which

is a variation of the BAP that also allows to divert vessels to another terminal when there is a

peak demand, and solved it using a memetic algorithm. Collaboration is also studied by integrating

berth allocation with other scheduling problems such as ship routing. Pang and Liu (2014) studied

such integration for a feeder company operating both vessels and container terminals. This study

also considered transhipments of containers but did not cover speed optimization.

Game theory has also been widely applied in the container shipping industry (Pujats, Golias,

and Konur 2020). In our paper, the focus is on cooperative game theory where the target is on dis-

tributing the profits or savings among players. The studies vary depending on which are the players

considered (carriers, terminal operators or both) in the cooperation. Song and Panayides (2002)

applied cooperative game theory to depict a conceptual framework for liner shipping alliances

showing that the core theory is applicable to the liner shipping market. Saeed and Larsen (2010)

presented a two-stage cooperative game for container terminals within the Karachi Port in Pak-

istan. The results indicated that a grand coalition among all players gives the best payoff for all

terminals. The work by Krajewska et al. (2008) showed, by means of cooperative game theory, that

collaboration among road freight carriers is practical and cost-effective for all players. Wen et al.

(2019) studied the benefits of horizontal cooperation in a shipping pool by not only maximizing

the pool profit but also allocating the profits fairly among participants. The profit sharing frame-

work from Krajewska et al. (2008) and some of the profit allocation methods presented in Wen

et al. (2019) have been used in this study and, to the best of our knowledge, it is the first time

cooperative game theory is applied to the MPBAP.

2.4. Research gap

While the BAP and VSP have been extensively studied in the literature, with an increasing interest

in the last decade, very few papers address the potentials of integrating the two problems and

only one paper has been found to address the MPBAP. Only an MIP formulation for the problem

has been proposed, which shows good performance for small instances but struggles when the size

of the instances increases. Therefore, there is a need for a more efficient solution method that

scales better to larger instances. Furthermore, the MPBAP implies collaboration between different

parties in the shipping industry and an analysis of the model’s applicability in real life is lacking

in the literature. Thus, we believe that assessing the stakeholders’ incentives to enter into such

collaboration is relevant.
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3. Problem description

The MPBAP can be seen as a partial integration between the BAP and the VSP. Particularly,

this study is based on the discrete and dynamic BAP and it is extended to cover multiple ports

where the sailing speed between ports is optimized. This can be seen as a collaborative approach

where information is shared among shipping line and terminal companies. The main addition of

the MPBAP compared to the BAP is the optimization of the sailing speed between ports and the

simultaneous planning of multiple ports. Figure 2 shows a solution example to a problem with four

ships and two ports, each having three berthing positions. As shown for ship 1, the travel time,

which depends on the chosen sailing speed, determines the arrival time to the next port and this

can constrain the available berthing time window further. The MPBAP aims at minimizing the

total costs for both the carriers and terminal operators.

Figure 2 Example solution of the MPBAP for four vessels, two port terminals and three berths per port. The

traveling timeline for ship 1 (in gray) is defined at the top, where EFT denotes the expected finish

time at port 1.

3.1. Fuel consumption model

One of the main costs for a carrier is the fuel. The fuel consumption is directly linked to the sailing

speed but not in a linear way. Thus, we need an accurate model that links the sailing speed with

the fuel consumption realistically.
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Many studies approximate the fuel consumption as a cubic function of the speed (e.g., Meng

and Wang (2011), Wang and Meng (2012), Reinhardt et al. (2016)),

F (i, δ) =

(
δ

δi

)3

Γi (1)

where equation (1) measures the fuel consumption F (i, δ) in tons/hour for a given ship i. δi is

the design speed of vessel i and δ is the sailing speed, both measured in knots (i.e., nautical miles

per hour). Finally, Γi is the fuel consumption in tons/hour for vessel i at the design speed. This

approximation is fairly accurate for container ships of limited size and for a range of sailing speeds

that are not significantly slow. In our study, we optimize the sailing speed between ports, where

we expect speeds similar to the design speed (δi) of the vessel and we do not consider the fuel

consumption derived from entering or leaving a port where near-zero speeds are used. In order to

avoid non-linearity in the mathematical formulation of the problem, we apply a discretization of

the cubic approximation based on the one proposed by Venturini et al. (2017). A set of different

speeds S is defined that can be used by ships to travel between ports. The set of speeds correspond

to reasonable and realistic speeds in a range around the design speed. Then, for each of the selected

speeds δ ∈ S and ship i, a fuel consumption value (γi,δ) measured in tons/nautical mile can be

calculated based on the cubic approximation using the following equation (2).

γi,δ =
F (i, δ)

δ
=

(
δ
δi

)3

Γi

δ
(2)

3.2. Cost Structure

The MPBAP aims at optimizing the operational costs for both carriers and terminal operators. This

Section defines the main costs involved in the problem context and describes to which stakeholder

the costs are related. An overview of the main sources of cost and revenue for both carriers and

terminal operators is shown in Figure 3.

As mentioned in Section 3.1, the main cost driver for a shipping line company is the fuel con-

sumption which usually accounts for more than 50% of the carrier’s total costs (Fagerholt and

Psaraftis 2015). Another carrier related cost is the waiting time at anchorage (i.e., waiting to berth

at port). As described by Chang et al. (2012), the waiting cost is not only the direct cost of being

for longer time at a port, but also the resulting loss of potential income (i.e., opportunity cost).

Regarding the service time at port, this is usually pre-established by a contract or when booking

the port call. The cost may differ based on multiple factors such as the number for containers to be

loaded and unloaded (i.e., quay crane moves) or the size of the ship and number of cranes required.
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Figure 3 General overview of main costs and revenue for the shipping carriers and terminal operators.

In this case, the cost can be considered constant for the carrier regardless of the resulting quality

of the terminal’s planning. Finally, there are also delay costs associated to the carrier. Ending the

service after the expected finish time at a port may result in additional payments to the shippers

for the delay on the delivery of their cargo. In addition there may be other costs arising from

delays. On one hand, if the delay at the terminal is caused by the ship arriving late, the carrier

may be subject to a fine or delay penalty to the terminal. On the other hand, if the planned

service time for a ship gets extended due to, for example, a breakdown of a quay crane or a poor

berth allocation plan, the carrier affected by the delay may be entitled to a compensation from

the terminal operator. It can be noticed, that these delay costs are paid from the carrier to the

terminal operator or vice versa. This means that a cost for one party becomes a revenue for the

other one. The main premise of this problem is that carriers and terminal operators jointly plan

their operations and, therefore, the internal delay costs do not exist and can be excluded from the

objective of the problem.

The main costs impacting the planning of the terminal in this problem are both the handling

and delay costs. We identify the use of resources to be directly proportional to the number of

workforce and quay crane usage hours. The fewer shifts needed to serve the vessel, the greater the

profit is for the terminal. Therefore, both an increasing handling time by the vessels or an increased

delay will require additional workforce. As mentioned before in this section, one of the premises

of the MPBAP is that the planning decisions are agreed between the carrier and the terminal

operator based on the overall best solution for all. This collaborative optimization removes the

concept of delay between the participating players. However, we do consider a delay cost for the
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terminal operators in the objective of the problem. We study the problem from a tactical point of

view but assume that, for instance, workforce planning at the terminal is performed beforehand.

In this scenario, the suggested optimal berth allocation plan for a given terminal may require more

workforce than initially planned. This will directly translate in the use of additional resources to

cover for the additional handling operations that can be computed as delay costs.

All in all, the MPBAP covers the costs depicted with a continuous line in Figure 3. Thus, the

objective of the problem focuses on minimizing the fuel consumption and the costs related to

waiting, handling and delay time.

3.3. Mixed-integer problem formulation. The Venturini et al. (2017) model

The solution method presented in this paper is based on a mixed integer problem (MIP) formulation

from Venturini et al. (2017), which we now briefly present. We first list the notation used in the

model:

Sets and parameters
N Set of ships
P Set of ports
Pi Set of ports to be visited by ship i∈N sorted in visiting order
Bp Set of berths at port p∈ P
V p,b Set of vertices, V p,b =N ∪{o(p, b), d(p, b)}, with o(p, b) = origin node for

arcs and d(p, b) = destination node for arcs, both defined for every port
p∈ P and berth b∈Bp

Ap,b Set of arcs (i, j) with i, j ∈ V p,b, i 6= j
S Set of speeds
Startpi Minimum starting time of activities for ship i∈N at port p∈ Pi
EFT pi Expected finishing time of activities for ship i∈N at port p∈ Pi
sp,b Starting time of activities for berth b∈Bp at port p∈ P
ep,b Ending time of activities for berth b∈Bp at port p∈ P
hp,bi Handling time of ship i∈N at berth b∈Bp at port p∈ P
dp,p

′
Distance between pair of ports p, p′ ∈ P

PiL The last port to be visited by ship i∈N in the route
γi,δ Fuel consumption per unit of distance for ship i∈N at speed δ ∈ S
∆δ Travelling time per unit of distance when travelling at speed δ ∈ S
M1p,b Big-M value, M1p,b = ep,b

M2p,bi Big-M value, M2p,bi = ep,b−hp,bi
Fc Fuel consumption cost in $ per ton
Hc Handling activities cost in $ per hour
Ic Idleness cost in $ per hour
Dc Delay cost in $ per hour
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Decision variables

yp,bi,j ∈B 1 if ship j immediately succeeds ship i at berth b ∈ Bp at port p ∈ P
where (i, j)∈ V p,b; 0 otherwise

vpi,δ ∈B 1 if ship i∈N sails from port p to some other port p′(p, p′ ∈ Pi := p≺ p′)
at speed δ ∈ S; 0 otherwise

T p,bi ∈Z+ Time at which ship i∈N berths at berth b∈Bp at port p∈ Pi (berthing
time)

T p,bo(p,b) ∈Z+ Time at which berth b ∈ Bp at port p ∈ Pi starts berthing ships (i.e.,
arrival time of the first ship to the berth)

T p,bd(p,b) ∈Z+ Time at which berth b ∈Bp at port p ∈ Pi finishes berthing ships (i.e.,
departure time of the last ship from the berth)

T pi ∈Z+ Time at which port p∈ Pi opens activities for ship i∈N
∆EFT pi ∈Z+ Difference between effective finishing time and EFT pi for ship i ∈N at

port p∈ Pi

The mathematical model is presented below:

min
∑
i∈N

∑
p,p′∈Pi\{PiL}:{p≺p′}

Ic

∑
b∈Bp′

T p
′,b

i −
∑
b∈Bp

T p,bi +
∑
b∈Bp

hp,bi (
∑

j∈N∪{d(p,b)}

yp,bi,j )−
∑
δ∈S

∆δd
p,p′vpi,δ


+
∑
i∈N

∑
p∈Pi

∑
b∈Bp

Hc(h
p,b
i

∑
j∈N∪{d(p,b)}

yp,bi,j ) +
∑
i∈N

∑
p∈Pi

Dc∆EFT
p
i +

∑
i∈N

∑
p,p′∈Pi\{PiL}:{p≺p′}

∑
δ∈S

Fc(γi,δd
p,p′vpi,δ)

(3)

subject to:

∑
b∈Bp

∑
j∈N∪{d(p,b)}

yp,bi,j = 1 ∀i∈N,∀p∈ Pi (4)∑
j∈N∪{d(p,b)}

yp,bo(p,b),j = 1 ∀p∈ P,∀b∈Bp (5)∑
j∈N∪{o(p,b)}

yp,bj,d(p,b) = 1 ∀p∈ P,∀b∈Bp (6)∑
j∈N∪{d(p,b)}

yp,bi,j −
∑

j∈N∪{o(p,b)}

yp,bj,i = 0 ∀i∈N,∀p∈ Pi,∀b∈Bp (7)

T p,bi +hp,bi −
(
1− yp,bi,j

)
M1p,b 6 T p,bj ∀(i, j)∈Ap,b,∀p∈ {Pi ∩Pj} ,∀b∈Bp

(8)∑
b∈Bp

T p,bi +
∑
b∈Bp

hp,bi (
∑

j∈N∪{d(p,b)}

yp,bi,j ) +
∑
δ∈S

∆δd
p,p′vpi,δ 6 T

p′

i ∀i∈N,∀p, p′ ∈ Pi\{PiL} : {p≺ p′} (9)

T pi > Start
p
i ∀i∈N,∀p∈ Pi (10)∑

b∈Bp

T p,bi +
∑
b∈Bp

hp,bi (
∑

j∈N∪{d(p,b)}

yp,bi,j )−EFT pi 6∆EFT pi ∀i∈N,∀p∈ Pi (11)∑
b∈Bp

T p,bi > T
p
i ∀i∈N,∀p∈ Pi (12)

(
∑

j∈N∪{d(p,b)}

yp,bi,j +
∑

j∈N∪(o(p,b))

yp,bj,i )M2p,bi > T
p,b
i ∀i∈N,∀p∈ Pi,∀b∈Bp (13)
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T p,bo(p,b) > s
p,b ∀p∈ P,∀b∈Bp (14)

T p,bd(p,b) 6 e
p,b ∀p∈ P,∀b∈Bp (15)∑

δ∈S

vpi,δ = 1 ∀i∈N,∀p∈ Pi\{PiL} (16)

yp,bi,j ∈ {0,1} ∀(i, j)∈Ap,b,∀p∈ P,∀b∈Bp (17)

vpi,δ ∈ {0,1} ∀i∈N,∀p∈ Pi,∀δ ∈ S (18)

∆EFT pi , T
p
i ∈Z+ ∀i∈N,∀p∈ Pi (19)

T p,bo(p,b), T
p,b
d(p,b)∈Z

+ ∀p∈ P,∀b∈Bp (20)

T p,bi ∈Z+ ∀i∈N,∀p∈ Pi,∀b∈Bp (21)

The objective function (3) minimizes the cost, both for the terminal operators and the liner

shipping company. It consists of the four cost elements described in Section 3.2, namely, the cost

of waiting at the port, the vessels’ handling cost, the cost of delays, and the total cost of the fuel

consumed when sailing between ports. The waiting time is computed as the positive difference

between the berthing time and the arrival time whereas the delay is computed as the positive

difference between the actual and expected berthing finish time. Constraints (4) ensure that each

ship berths at only one berth at each port in its route. Constraints (5) and (6) denote that

at each berth and each port, only one arc leaves the origin and one arrives at the destination

respectively. The flow conservation for all arcs at each berth and each port is ensured by constraint

(7). Constraints (8) guarantee that if ship j is berthing right after ship i, it waits until the handling

is completed. The big-M values for these constraints can be tightened to the time when the berth

closes (ep,b). Constraints (9) ensure for each ship that the activities at the next port in the route

do not commence before the ship arrives to the port. The left-hand side of the constraint computes

the arrival time to the next port travelling at a chosen speed. The start of activities for each ship

at each port must also start after the minimum allowed time (Startpi ) as indicated in constraints

(10). This also ensures that a ship cannot start berthing if it arrives too early. Both constraints

(9) and (10) set a lower bound (LB) for the variable T pi . Constraints (11) compute and set the

delay (∆EFT pi ) for each ship at each port. Constraints (12) ensure that the berthing time of each

ship at each port starts after the activities for that ship are open at the port. The values of the

berthing time variables for the not chosen berths are set to 0 by constraints (13). Constraints (14)

and (15) ensure that all berthing periods occur within the time window of each berth. Constraints

(16) ensure that exactly one speed is selected to travel between each pair of consecutive ports (leg)

in the route. The domains for all the decision variables are defined in (17)-(21). We notice that a

formulation where the time-based variables are defined as non-negative real numbers (i.e., R+) is
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also valid. However, we maintain the integer property of the variables for a fair comparison with

the presented methods and the formulation presented in Venturini et al. (2017).

This formulation contains a few modifications to the original model presented in Venturini et al.

(2017) (referred to as original model). In the original model a set of additional variables for the

arrival of a ship to a port is stated. These variables have been omitted in this formulation since

the arrival time of a ship to the next port in the route is directly dependent on the departure

time from the previous port and the sailing speed between ports. This calculation is given by the

left-hand side of constraints (9), which then can be used to replace arrival time variables (e.g., in

the objective function). The delay calculation constraints (11) use the berthing time (T p,bi ) instead

of the port opening time for the ship (T pi ). The big-M value of constraints (8) is set to the closing

time of the berth (ep,b) instead of ep,b−minc∈(i,j){Startpc}.

Venturini et al. (2017) enhance the original formulation by adding multiple sets of valid inequal-

ities. These enhancements have also been implemented for the computational comparison. The

reader is referred to the original publication for additional details.

3.4. Network flow formulation

The MPBAP can also be modeled as a network flow problem using a graph representation where

each node represents a feasible berthing time at each port and berth and arcs enable the different

combinations of berthing times along the route. This setup allows us to obtain a feasible voyage

for a given ship by choosing a path along the ports in the graph. Figure 4 shows an illustrative

example of such a path. It consists of three ports with either one or two berthing positions in each

of them.

Let G = (O,A) be a directed and acyclic graph formed by the sets of nodes O and arcs A.

Additionaly, we define the subset of arcs Ak ⊆A which denote the arcs available for a given ship

k ∈N . Within the node set, we denote o, d∈O as artificial source and sink nodes respectively. Let

δ+
k (u) be the set of nodes that can be reached by following a single outgoing arc a∈Ak from node

u ∈O for ship k ∈N . Likewise, let δ−k (u) be the set of nodes that can be reached by following a

single incoming arc a∈Ak from node u∈O for ship k ∈N . Additionally, θ(u) denote the berthing

time related to node u ∈ O\{o, d} and let V (p, b) ⊆ O be the set of nodes corresponding to port

p∈ P and berth b∈Bp. We use the notation [x;y] to define an interval between x and y where y is

included and [x;y) where y is not. For each ship n∈N port p∈ P berth b∈Bp and operating time

instant t∈ [sp,b;ep,b), we define the set C(n,p, b, t)⊆ V (p, b) that denote the graph nodes for ship n

whose berthing periods cover time t (i.e., nodes that are in conflict with any ship berthing at time

t). This basically corresponds to the nodes of the previous hp,bn − 1 time instants and including the
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Figure 4 Example voyage for ship k and corresponding timeline. The number in the nodes indicate the berthing

time and the number on the arcs denotes the speed level chosen. Alternative sailing options are denoted

with dashed arcs. The rest of arcs in the graph are not displayed for simplicity.

Figure 5 An example of the set C(n,p, b, t) where the nodes depicted belong to V (p, b) and refer to the time

instant directly above. hp,bn denotes the handling time for ship n.

node related to time t. An example is depicted in Figure 5 and the expression can be stated as

follows:

C(n,p, b, t) :=

{
v ∈ V (p, b)

∣∣∣θ(v)∈
[

max
(
t−hp,bn + 1, sp,b

)
;min

(
t, ep,b

)]}
Finally, let xki,j be a binary variable deciding if arc (i, j) ∈Ak is selected for ship k ∈N and let

ci,j be the weight associated to the same arc.

min
∑
k∈N

∑
(i,j)∈Ak

ci,jx
k
i,j (22)

∑
j∈δ+

k
(o)

xko,j = 1 ∀k ∈N (23)
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i∈δ−
k

(d)

xki,d = 1 ∀k ∈N (24)

∑
i∈δ−

k
(j)

xki,j −
∑

i∈δ+
k

(j)

xkj,i = 0 ∀j ∈O\{o, d}, k ∈N (25)

∑
k∈N

∑
i∈C(k,p,b,t)

∑
j∈δ+

k
(i)

xki,j ≤ 1 ∀p∈ P, b∈Bp, t∈ [sp,b;ep,b) (26)

xki,j ∈ {0,1} ∀(i, j)∈A,k ∈N (27)

The objective remains the same, and in this case the objective function (22) minimizes the cost of

the selected arcs. Constraints (23) and (24) ensure that, for each ship, only one arc leaves from the

source node and arrives to the sink node respectively. Constraints (25) enforce flow conservation

ensuring that for each node, except the source and sink ones, there are as many incoming as

outgoing arcs. Constraints (26) avoid overlapping of berthing periods in the same position by at

most allowing one ship to be berthing at each time instant. Finally, constraints (27) define the

binary property of the variable.

3.5. Generalized Set Partitioning Problem formulation

It is noted that all constraints of the network flow formulation (22)-(27) except constraint (26)

are independent between ships. Exploiting the structure of the formulation, we can apply Dantzig-

Wolfe decomposition (Dantzig and Wolfe (1960)) and transform it into a generalized set partitioning

problem (GSPP) formulation where constraint (26) is handled in the master problem and each

variable (i.e., column) refers to a whole feasible schedule of a ship along its route. According to

Jans (2010), the pure binary nature of the variables of the network flow formulation allows us to

impose binary conditions on the variables of the new master problem.

The set of all columns is comprised in Ω and the decision variable λj is set to 1 if column j ∈Ω is

chosen as part of the solution and 0 otherwise. We denote cj as the cost related to column j ∈Ω. In

order to replicate the objective of the MIP formulation, this cost consists of the idleness, handling

cost, delay and bunker consumption cost of the ship denoted by the column. Let Aij be a parameter

that is equal to 1 if column j ∈Ω corresponds to ship i∈N and 0 otherwise. Likewise, let Qp,b,t
j be

a parameter that is equal to 1 if the ship of column j ∈Ω is occupying berth b∈Bp at time instant

t∈ [sp,b;ep,b) at port p∈ P and 0 otherwise.

min
∑
j∈Ω

cjλj (28)∑
j∈Ω

Aijλj = 1 ∀i∈N (29)∑
j∈Ω

Qp,b,t
j λj 6 1 ∀p∈ P, b∈Bp, t∈ [sp,b;ep,b) (30)

λj ∈ {0,1} ∀j ∈Ω (31)
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The objective function (28) minimizes the cost cj of the columns. Constraints (29) ensure that one

column is selected for each ship. Constraints (30) guarantee that, at each time instant, there is at

most one ship berthing at each berth of a port. Finally, constraints (31) set the binary property of

the decision variables.

4. Solution method

To solve (28)-(31), we propose a solution method based on a column generation procedure that,

combined with branching, additional valid inequalities and symmetry breaking methods, results in

a branch-and-cut-and-price algorithm.

4.1. Delayed Column generation

A common way of solving the GSPP formulation is by adding all the columns in advance. A suc-

cessful example of this approach for the BAP can be found in Buhrkal et al. (2011). For the BAP

instances presented, the amount of columns is manageable and can be easily pre-processed. How-

ever, in the MPBAP, the amount of columns increase exponentially with the multiple sailing speeds

and ports for a ship. This makes the pre-processing intractable even for a few ports. Therefore,

more dynamic strategies for handling the columns need to be explored. One efficient procedure

is the so-called delayed column generation. This procedure relies on the premise that most of the

variables will not be part of the optimal solution and, therefore, have a value of zero. Then, the

focus is only on generating columns that have the potential to improve the objective value. This

is done by relaxing and splitting the main problem into two, the master and subproblem. The

restricted master problem (RMP) is the linear relaxation of the original formulation containing

only a subset of the variables. The subproblem (or pricing problem) is used to identify the new

variables. In our case, the relaxed version of the GSPP becomes the RMP and we define N inde-

pendent subproblems, one per ship. The subproblem is defined as a shortest path problem in the

network defined in Section 3.4 which can be solved in polynomial time. Since the graph is directed

and acyclic (DAG), it can be solved by a DAG shortest path algorithm (see Cormen, Leiserson,

and Rivest (1996) or Magnanti, Orlin, and Ahuja (1993)). The pricing problem aims at minimizing

the reduced cost of a given path. At each iteration, after solving the RMP, the dual values of the

RMP constraints are used to solve the pricing problems. We denote αk to the dual variable for

ship k ∈N associated to constraint (29). Likewise, we denote µp,b,t to the dual variable for port

p ∈ P , berth b ∈Bp and time t ∈ [sp,b;ep,b) associated to constraint (30). Let ᾱk, µ̄p,b,t be the dual

solution values for the RMP and let Λj be a sequence of (port,berth,time) elements. Each of these

elements refers to the port, berth and time of a graph node visited by column j ∈Ω. The reduced

cost ĉj for a specific path j for ship k ∈N is computed as follows:

ĉj = cj − (
∑

(p,b,t)∈Λj

∑
t′∈[t;t+h

p,b
k

)

µ̄p,b,t′)− ᾱk
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Finally, for each pricing problem, we add the path with the lowest reduced cost to the RMP only

if ĉj is negative (i.e, ĉj < 0).

In fact, when the pricing problem is a pure shortest path problem, the LP bound arising from

solving the GSPP with column generation and solving the LP relaxation of the network flow

problem is the same. This indicates that the Dantzig-Wolfe decomposition does not provide any

gain bound-wise. On the other hand, in cases of very dense networks with significantly more arcs

than nodes as in our case, solving the GSPP with column generation is expected to be faster (e.g.,

see Brouer, Pisinger, and Spoorendonk (2011)).

4.2. Branching

Since the decision variables of the RMP are linear, the solution at the root node is often fractional

and branching methods are required in order to achieve integrality. A major aspect of the branching

procedure is selecting a branching candidate, whose branch children improve the lower bound the

most. The most common branching methods consider branching on a specific node or arc from the

graph. These strategies can be effective in some cases but do not necessarily apply to our problem.

For instance, when branching on a graph node, one child will enforce the graph node to be used in

the subsequent branch-and-bound (B&B) tree while the other child will forbid it. Considering the

large amount of nodes for most instances in this problem, we can clearly see that the effect can

be significant for the first child but rather minimal for the second. This often results in a highly

unbalanced B&B tree to explore. In this study, we present a different branching strategy for the

problem at hand that aims to be more effective than branching on a single graph node.

The proposed branching strategy states that, given a fractional solution, we compute, for each

ship n and port p, the average berthing time t and the variance of these times among all solution

columns. As an example, consider a fractional solution containing two columns for ship 1. At

port 1, these columns correspond to ship 1 berthing at time 4 and 6 respectively. Then, for ship

1 and port 1, the average berthing time is 5 whereas the sample standard deviation is
√

2. We

define this average berthing time and variance as a candidate which results in a total of |N | · |P |
candidates. We then select the candidate whose variance of berthing times is higher. The procedure

is described in Algorithm 1. Each of the child branches will enforce ship n to berth before or

after time t respectively at port p. It should be noticed that a fractional solution where ships

berth at the same time but at different berthing positions can exist. In this case, we can obtain

candidates with no variance resulting in an impractical branching. If that happens, the criterion

is changed to branching on berthing positions instead of on berthing times, following the same

procedure. In practice, this scenario is highly unlikely to happen and we have not experienced it in

any experiments hitherto. As a result, the proposed strategy opts for branching on a set of graph

nodes instead of on a single one.
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Finally, the B&B tree is explored following a best first policy. This policy prioritizes the queue

of unexplored nodes according to their bound. Thus, the next node to be explored is always the

one with the best (i.e., lowest) lower bound.

Algorithm 1: Branching candidate selection

Data: sol: current solution.

Result: Cand∗: the candidate to branch on.

1 begin
2 [λ]← sol // classify solution columns (λ) by ship

3 Cand∗ = ∅ // initialize best candidate

4 σ∗ = 0 // initialize standard deviation of candidate’s berthing times

5 for ships and ports do
6 [times]← λ(ship, port) // set of solution berthing times at port for ship

7 time← avg([times]) // get average of berthing times

8 if σ([times])>σ∗ then // compare the standard deviation with the current best

9 σ∗← σ([times])

10 Cand∗← time, port, ship // update best candidate so far

4.3. Valid inequalities

In order to improve the lower bound, we propose a set of valid inequalities that can be added to

the problem by separation.

Figure 6 shows a small LP solution to a trivial problem with two ships (i.e., continuous and

dashed lines), one port and one berth where an example of a violated valid inequality can be found.

We define u, v as the two nodes corresponding to ship A (berthing at times 1 and 3) and let w be

the node of ship B berthing at time 2. We observe that the arc from node w is in conflict with the

arcs from both nodes u and v due to overlapping berthing periods. In other words, the berthing

period of ship B at node w covers, at least partially, both berthing periods of ship A at nodes u

and v. The arcs from u, v are also in conflict with each other as they belong to the same ship. As

a result, we notice that, at most, one outgoing arc can be chosen out of the ones from these three

nodes. Since the solution values of the outgoing arcs sum to 1.5, this valid inequality would cut the

example LP solution. We aim at generalizing the definition of such a valid inequality and introduce

the following proposition:
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Figure 6 Example LP solution of a problem with two ships, one port and one berth. The nodes represent berthing

times and the numbers on the arcs denote the solution value of the arc variable xki,j .

Proposition 1. Given two time instants t1, t2 ∈ [sp,b;ep,b) where t1 < t2 and a port p∈ P , berth

b∈Bp and ship n∈N , the following is a valid inequality:∑
u∈

⋃
t∈[t1;t2]C(n,p,b,t)

∑
w∈δ+n (u)

xnu,w +
∑

m∈N\{n}

∑
u∈C(m,p,b,t1)∩C(m,p,b,t2)

∑
w∈δ+m(u)

xmu,w 6 1

Proof. The set C(m,p, b, t) used in constraint (26) defines the set of nodes for ship m that are

in conflict with time t (see Section 3.4). Based on this definition, the intersection set C(m,p, b, t1)∩

C(m,p, b, t2) directly defines the set of nodes for ship m that are in conflict with both time instants

t1 and t2. Constraint (26) indicates that at most one arc can be chosen out of the nodes from

the sets C(m,p, b, t) of all ships m ∈ N and, therefore, the same applies to the intersection set

C(m,p, b, t1)∩C(m,p, b, t2). By considering the intersection set C(m,p, b, t1)∩C(m,p, b, t2) for all

ships except one m∈N\{n}, the berthing period for ship n is only required to be in conflict with

either t1 or t2 and can be defined as the union of C(n,p, b, t1)∪C(n,p, b, t2). Considering these node

sets, we can define the following valid inequality:

∑
u∈C(n,p,b,t1)∪C(n,p,b,t2)

∑
w∈δ+n (u)

xnu,w +
∑

m∈N\{n}

∑
u∈C(m,p,b,t1)∩C(m,p,b,t2)

∑
w∈δ+m(u)

xmu,w 6 1

∀p∈ P, b∈Bp, n∈N, t1, t2 ∈ [sp,b;ep,b), t1 < t2

Based on the assumption that a berthing period cannot be discontinued, the intersection set

C(m,p, b, t1)∩C(m,p, b, t2) for any ship is not only in conflict with times t1 and t2 but with all the

time instants in the period [t1; t2]. Therefore the interval for ship n can be expanded to the union
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Figure 7 In a valid inequality for ship n, port p, berth b and time instants t1, t2, the filled nodes indicate the

interval for ship n with handling time hp,bn . The rectangles indicate the berthing period of ship n at the

earliest and latest possible berthing times in the interval.

of C(n,p, b, t) sets for all time instants t∈ [t1; t2]. An example of this set is shown in Figure 7 and

the resulting valid inequality can be formulated as follows:

∑
u∈

⋃
t∈[t1;t2]C(n,p,b,t)

∑
w∈δ+n (u)

xnu,w +
∑

m∈N\{n}

∑
u∈C(m,p,b,t1)∩C(m,p,b,t2)

∑
w∈δ+m(u)

xmu,w 6 1

∀p∈ P, b∈Bp, n∈N, t1, t2 ∈ [sp,b;ep,b), t1 < t2 (32)

�

Returning to the example in Figure 6, the mentioned cut would be included in the proposed valid

inequality (32) for n = A, t1 = 2 and t2 = 4 where node w would correspond to a node from the

intersection sets C(B,p, b,2)∩C(B,p, b,4) and nodes u, v for ship A would correspond to berthing

times covering t1 and t2 respectively and therefore belonging to the set
⋃
t∈[2;4]C(A,p, b, t).

We note that the inequality only is interesting when C(m,p, b, t1) ∩C(m,p, b, t2) 6= ∅. The size

of the intersection set is dependent on the time instants t1, t2 used and we observe that this size

increases when the t1, t2 are closer together in time.

These valid inequalities (32) are added by separation after the column generation procedure

concludes. Exploring the entire set of valid inequalities can be computationally intensive. Therefore,

only valid inequalities based on berthing times from the LP solution are checked since the arcs

from the related nodes are guaranteed to contain non-zero values and the resulting inequalities

have a higher probability of being violated by the LP solution. Given an LP solution, let t∗1 and t∗2

be two berthing times for ship n at berth b of port p where t∗1 ≤ t∗2. Let t∗3 be a berthing time for

another ship m at the same berth b of port p whose berthing period is both in conflict with t∗1 and

t∗2 for ship n. The conditions that t∗3 needs to satisfy to be in conflict with t∗1 and t∗2 are given by

the following inequalities:

t∗1 +hp,bn > t∗3

t∗2 < t
∗
3 +hp,bm
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Figure 8 Example of times t1, t2 definition based on solution times t∗1, t
∗
2 for ship n and t∗3 for ship m. The bottom

last two rows of filled nodes define the node interval for ship n and m respectively.

Based on these times, we can calculate time instants t1, t2 for a valid inequality that includes t∗1, t
∗
2

for ship n and t∗3 for ship m as follows:

t1 = t∗1 +hp,bn − 1, t2 = t∗2

An example of this calculation is shown in Figure 8. It can be noticed that the interval for ship n

starts at time t∗1 and ends at time t∗2. If we add such a violated cut to the RMP, we risk finding a

very similar solution in the next iteration where columns are shifted, for example, one time instant

before t∗1 or after t∗2. In order to avoid that, we aim at defining time instants t1, t2, so that the

resulting intervals do not only cover solution nodes but also a number of neighboring nodes related

to time instants immediately before and after the solution time. We aim at expanding the interval

between t∗1 and t∗2 as well as the one around t∗3. Based on the inequalities aforementioned to ensure

that t∗1, t
∗
2 and t∗3 relate to conflicting periods, we introduce the slack variables ∆X and ∆Y that

would indicate how much we can modify the node intervals.

t∗1 +hp,bn > t∗3 + ∆X

t∗2 + ∆Y < t∗3 +hp,bm

Both slack values are distributed equally between both intervals, which leads us to the following

calculation of t1 and t2:

t1 = t∗1−
∆X

2
+hp,bn − 1, t2 = t∗2 +

∆Y

2

Due to the discretization of the time horizon, if ∆X

2
or ∆Y

2
is fractional, they are rounded-up in

the calculation of t1 and t2. Also, in the case that there is limited room for expansion in one of the

intervals (e.g., operational time windows), the remaining slack is added to the other interval.
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Figure 9 Example of times t1, t2 selection based on solution times t∗1, t
∗
2 for ship n and t∗3 for ship m. The upper

illustration depicts the LP solution for the three berthing times selected and the available slack and

direction of expansion for the desired node intervals. The lower illustration depicts the resulting times

t1, t2 for the valid inequality and the respective node intervals for ships n and m.

Figure 9 shows an example of the calculation of times t1 and t2 based on solution times t∗1, t
∗
2

and t∗3 and slack variables ∆X ,∆Y .

In order to ensure t1 < t2, by substituting the above expressions, the criterion that t∗1, t
∗
2, t
∗
3 need

to fulfill in order to result in a valid inequality can be defined as follows:

t∗1−
∆X

2
+hp,bn − 1< t∗2 +

∆Y

2

Not satisfying this inequality leads to a cut that, at best, is equal to constraint (30) which is already

present in the RMP.

The entire cut separation process is summarized in Algorithm 2. The procedure requires the RMP

model and an LP solution as input. From the solution, both the λ∗ solution values and the berthing

times of the solution columns are extracted and classified by ship, port and berthing position. The

cuts are checked by enumerating combinations of solution times t∗1, t
∗
2 and t∗3. Only solution times

whose berthing periods are in conflict are considered. This is the case if the berthing period of

ship m at time t∗3 overlaps both berthing periods of ship n at times t∗1 and t∗2 (inConflict(t∗1, t
∗
2, t
∗
3)

in Algorithm 2). Then, the solution times are used to compute time instants t1, t2 distributing

the slack available as aforementioned in this Section (t1, t2← calcInterval(t∗1, t
∗
2, t
∗
3) in Algorithm
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2). To check and add the violated cuts to the RMP, equation (32) needs to be translated to the

problem variables. The xki,j variables can be defined using λp variables as follows:

xki,j =
∑
p∈Ω

qki,j,pλp

where parameter qki,j,p is 1 if graph arc (i, j)∈Ak for ship k is used by column p∈Ω and 0 otherwise.

Applying this equality to equation (32), we obtain the following version of the equation:

∑
u∈

⋃
t∈[t1;t2]C(n,p,b,t)

∑
w∈δ+n (u)

∑
j∈Ω

qnu,w,jλj +
∑

m∈N\{n}

∑
u∈C(m,p,b,t1)∩C(m,p,b,t2)

∑
w∈δ+m(u)

∑
j∈Ω

qmu,w,jλj ≤ 1 (33)

For each cut inspected, the left-hand side of constraint (33) is computed and the valid inequality

is added to the RMP if it is violated.

Algorithm 2: Cut separation

Data: sol,RMP : current solution and model.

Result: RMP : updated model with separated cuts.

1 begin
2 times[p, b,n]← sol // classify solution times by port p, berth b and ship n

3 [λ∗]← sol // obtain solution values for columns

4 for p∈ P, b∈Bp, n∈N do // cuts are based on a specific berth, port and ship

5 for t∗1, t
∗
2 ∈ times[p, b,n] do // loop over pairs of solution times for ship n

6 for m∈N,m 6= n do
7 for t∗3 ∈ times[p, b,m] do // select a third time from a different ship

8 if inConflict(t∗1, t
∗
2, t
∗
3) then // check if berthing periods are in conflict

9 t1, t2← calcInterval(t∗1, t
∗
2, t
∗
3) // compute t1, t2 for the valid inequality

10 violatedCut← checkCut(t1, t2, n, p, b, [λ
∗]) // add violated cut to the RMP

These valid inequalities are relatively easy to handle in the reduced cost computation. For each

valid inequality, its corresponding dual value needs to be subtracted in each of the nodes considered

for each ship in the constraint. As an example, given a valid inequality for times t1, t2 where t1 < t2,

port p, berth b and ship n, its dual value needs to be subtracted in nodes
⋃
t∈[t1;t2]C(n,p, b, t) for

ship n and in nodes C(m,p, b, t1) ∩C(m,p, b, t2) for ship m where m 6= n. A more mathematical

definition of the updated reduced cost computation is given in Appendix A.
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4.4. Symmetry breaking

In some instances, at each port, some of the berthing positions are identical in terms of their

availability time window and the handling times for all ships. Identical berths may lead to many

equivalent solutions, which may increase the solving time of the model. Therefore, we propose

adapting the model so it deals with berth types instead of individual berths in a similar procedure

as the one stated in Buhrkal et al. (2011). Let Kp be the set of berth types for port p∈ P and βk

be the number of berthing positions of type k ∈K in the problem. For each berth type k ∈Kp at

port p∈ P , sp,k and ep,k denote its opening and closing time respectively and the parameter Qp,k,t
j

is 1 if the ship from column j ∈Ω occupies berth type k at time instant t∈ [sp,k;ep,k) at port p and

0 otherwise. We can therefore update the set of constraints (30) as follows:∑
j∈Ω

Qp,k,t
j λj 6 β

k ∀p∈ P,k ∈Kp, t∈ [sp,k;ep,k) (34)

This adaptation has an equivalent impact in constraints (26) from the network formulation where

the right-hand side is also replaced by βk. The valid inequality (33) from Proposition 1 can be

updated similarly and it is described in Proposition 2 that can be found in Appendix B. The

resulting valid inequality is formulated as follows:

∑
u∈

⋃
t∈[t1;t2]C(n,p,k,t)

∑
w∈δ+n (u)

∑
j∈Ω

qnu,w,jλj +
∑

m∈N\{n}

∑
u∈C(m,p,k,t1)∩C(m,p,k,t2)

∑
w∈δ+m(u)

∑
j∈Ω

qmu,w,jλj ≤ βk

∀p∈ P,k ∈Kp, n∈N, t1, t2 ∈ [sp,k;ep,k), t1 < t2 (35)

The reduced cost computation is also slightly modified where the dual variable µp,k,t of the modified

constraint now is based on berth type k ∈Kp instead of berth b∈Bp.

We expect to see an improvement in the computational time as soon as there are two identical

berths at a port. Likewise, we expect to see larger symmetry for the instances containing more

berthing positions per port.

5. Cooperative game theory

The MPBAP is based on a strong collaboration between carriers and port operators and some of

them, especially carriers, may be reticent to take part in such a collaboration scheme. In order to

convince them that this form of collaboration is beneficial for all of them, we define a cooperative

game. The aim is to show that all stakeholders (i.e., carriers and terminals) can potentially benefit

from a collaboration by distributing the overall costs efficiently. Our cooperative game is formed

by a set of players P = {1, ..., p}, which in this case corresponds to both the carriers owning the

ships and the terminal operators of the ports visited by the ships. The characteristic function

ϑ(S) measures the impact of a coalition of players S ⊆ P, which in this case is measured by the
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operational costs. The coalition formed by all players is known as the grand coalition. It is normally

assumed that the characteristic function satisfies:

ϑ(∅) = 0 (36)

ϑ(S ∪T )≤ ϑ(S) +ϑ(T ) ∀S,T ⊆P, S ∩T = ∅ (37)

Equation (36) states that an empty coalition has a cost of zero, while equation (37), known as

subadditivity , indicates that the costs of two separate coalitions S,T ⊆ P cannot be lower than

when acting together. A solution to a cooperative game (i.e., imputation) can be defined as f =

{f1, ..., fp} where fi corresponds to the cost allocation of player i in coalition P. An imputation

should satisfy the following conditions:

fi ≤ ϑ({i}) ∀i∈P (38)∑
i∈P

fi = ϑ(P) (39)

The first condition is based on individual rationality and defines that the cost allocation for a

player when being part of the grand coalition cannot be worse than the player’s standalone cost.

The second condition is based on group rationality and states that all the savings arising from a

grand coalition are shared. This is the equivalent of saying that the sum of cost allocations needs

to be equal to the total cost of the grand coalition and a solution fulfilling this condition is said

to be efficient. Furthermore, we consider a solution to be stable, if, for every coalition S ⊆P, the

sum of allocated cost of the players of the coalition is not higher than the cost of the coalition∑
k∈S fk ≤ ϑ(S). We define the core as the set of solutions that are both efficient and stable. We

see the core solutions as the most attractive and fair for all players. Note, however, that the core

may be empty in some cases. This means that a cost allocation that satisfies both the efficiency

and stability properties does not exist. In other words, it means that a subset of the players in

the grand coalition could do better by themselves (i.e., by forming a sub-coalition). If the core

is empty, the grand coalition is unstable and there is a risk that it breaks apart. In practice, the

grand coalition may stay together despite a non-core solution. For instance, it may be that a subset

of players are not aware of the higher benefits of a specific sub-coalition or that players choose to

stay in the coalition to reap more long-term benefits given future expectations. Next, we describe

the two allocation methods we have used in this study.

5.1. Shapley value

The Shapley value (Shapley 1953), refers to the weighted average of each player’s marginal con-

tribution to each of the potential coalitions. Let Θi(S) be the marginal contribution of player i to
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coalition S, which is seen as the difference between the cost of the coalition including player i and

the coalition without the player:

Θi(S) = ϑ(S ∪{i})−ϑ(S) (40)

Then, the cost allocated to participant i is computed by the following expression:

fi =
∑

S⊆P\{i}

|S|!|P\(S ∪{i})|!
|P|!

Θi(S) (41)

where | · | refers to the number of players in the given coalition. Once the characteristic function

ϑ(S) is calculated for all possible coalitions S, it is a simple method to compute as it only requires

applying a formula. The Shapley value does not only provide efficient solutions, it also contains

other valuable properties. The solutions are symmetric meaning that if two players contribute

equally to the coalitions, they achieve the same savings. Anonimity is also ensured, which states

that the order or labelling of players does not have an impact on the assignment of savings.

This property ensures a unique solution which avoids players to regret their choices and prevents

additional negotiation processes. On the other hand, the Shapley value does not ensure the stability

property, meaning that the solution is not guaranteed to be part of the core.

5.2. Equal profit method (EPM)

The goal of the equal profit method (Frisk et al. 2010) is to find the solution in the core that

minimizes the maximal difference in relative savings between pairs of players. The relative saving

of player i is computed as ϑ({i})−fi
ϑ({i}) . The method is formulated as the following linear programming

model:

min z (42)

z ≥ fi
ϑ({i})

− fj
ϑ({j})

∀i, j ∈P (43)∑
i∈P

fi = ϑ(P) (44)∑
i∈S

fi ≤ ϑ(S) ∀S ⊆P (45)

fi ≥ 0 ∀i∈P (46)

Constraints (43) calculate the difference in relative savings between each pair of players and restricts

z to the largest of those differences. Note that constraints (44) and (45) are the ones denoting the

stability and efficiency properties which means that the EPM method only allows solutions lying

in the core.
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6. Computational results

This section is divided in two. First, the performance of the proposed method is compared to a

commercial solver on the set of instances from Venturini et al. (2017) and an additional generated

set of harder instances. The second part covers the results of the cost allocation methods for the

cooperative game.

6.1. Instance results

Different versions of the algorithm have been tested varying the size of the B&B tree where valid

inequalities can be added. We consider (i) a pure branch-and-price where cut separation is not

performed at all, (ii) a partial branch-and-cut-and-price where we only allow valid inequalities to

be added in the root node, and (iii) a pure branch-and-cut-and-price where cuts can be added in

all the explored nodes. The RMP model solved is comprised by equations (28),(29),(34), the linear

relaxation of (31) and valid inequalities (35) that are added by separation. The algorithm includes

a running time-limit and, if it is reached and a gap between the lower and upper bounds still exists,

the GSPP formulation problem is solved with all the generated columns in the B&B tree. This

helps tightening the upper bound but requires the integer problem to be solvable in reasonable

time. The running time for solving the GSPP is set to 10% of the algorithm running time. Two

algorithm time limits of 5 minutes and 3 hours have been tested with an additional (if required) 30

seconds and 18 minutes respectively for solving the GSPP. The model has been entirely written in

Julia language (Bezanson et al. 2017), modelled using JuMP (Dunning, Huchette, and Lubin 2017)

and using CPLEX v. 12.9 as the solver, allowing 4 threads. It has been tested in an 2.20 GHz Intel

Xeon Processor 2650v4 using 4 cores with 32 GB of memory per core. The MIP formulation from

Venturini et al. (2017) has been run in the same machine and solved with the same solver for a

fair comparison. The results are summarized in Tables 1, 2, 3 and 4, that contain the performance

comparison on the benchmark instances from Venturini et al. (2017) and the generated set of

harder instances with both algorithm time limits. An instance is represented indicating the number

of ships N , the number of berthing positions per port B, the number of ports P and if the time

windows TW are tight T or loose L. As indicated in Venturini et al. (2017) a loose time window is

approximately 3 times longer than a tight one. In each instance, all ports have the same amount

of berthing positions and all the ships follow the same route and have the same speed profiles

but both the MIP and GSPP formulations can account for different amount of berthing positions

per port, different ship routes and different ship types. The set S is discretized in 11 speed levels,

covering the range 14-19 knots. A very low sulphur fuel oil (VLSFO) is used by the ships which is

in accordance with the increasing need of ships to reduce their sulphur emissions. Its price (Fc) is

computed as the average global price during the first quarter of 2021 corresponding to 500 $/ton
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(Ship & Bunker 2021). Regarding the cost of the different operational aspects at port, the current

literature does not provide a consensus on the costs of waiting, handling and delay time. Moreover,

this may fluctuate significantly between ports and in many cases they are not made available to

the public due to contractual agreements. Meisel and Bierwirth (2009) proposes a delay cost of

1000-3000 $/hour depending on the ship size and a service cost per quay crane hour of 100 $. They

also consider a speeding-up cost to berth at an earlier time of 1000-3000 $/hour which can resemble

the waiting time cost considered in this study. Venturini et al. (2017) set the terminal handling

cost weight to 200 $/hour and charge an additional 300 $/hour when there is a delay. They set

the cost of waiting one hour at anchorage to 200 $/hour. For the sake of a fair comparison, we use

the same costs as Venturini et al. (2017) which correspond to Hc = 200, Dc = 300 and Ic = 200.

LB denotes the best lower bound found whereas Z indicates the best integer solution (i.e., upper

bound). The optimality gap is stated under the column Gap and it is calculated using the optimal

solution, or in the case that this is unknown, the best known solution. The computational time in

seconds is given under column T .
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Table 1 Computational results on instances from Venturini et al. (2017) with a total time limit of 5 minutes and 30 seconds. The MIP formulation is

compared to the variants of the presented branch-and-cut-and-price method. ”-” means that no integer solution has been found within the time limit. ”*”

means the time limit has been reached. The best running time is highlighted in bold for instances solved to optimality and the best optimality gap for the

rest of instances.

Instance MIP formulation Branch & Price Branch & Cut (root node) & Price Branch & Cut & Price
N-B-P-TW LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s)

4-3-3-L 296,600 296,600 0.00 0.1 296,600 296,600 0.00 0.5 296,600 296,600 0.00 0.2 296,600 296,600 0.00 0.2
5-3-3-L 394,300 394,300 0.00 0.4 394,300 394,300 0.00 3.2 394,300 394,300 0.00 7.2 394,300 394,300 0.00 7.2
6-3-3-L 421,720 421,720 0.00 2.3 421,720 421,720 0.00 0.8 421,720 421,720 0.00 0.5 421,720 421,720 0.00 0.5
6-3-4-L 647,480 647,480 0.00 89.2 647,480 647,480 0.00 39.0 647,480 647,480 0.00 111.7 647,480 647,480 0.00 103.7
10-4-4-L 1,014,437 1,060,900 3.80 * 1,053,030 1,054,700 0.14 * 1,053,092 1,055,300 0.13 * 1,053,295 1,055,000 0.11 *
10-4-3-L 689,858 700,000 1.18 * 698,100 698,100 0.00 193.6 698,100 698,100 0.00 72.7 698,100 698,100 0.00 115.6
4-4-4-L 405,120 405,120 0.00 0.3 405,120 405,120 0.00 0.6 405,120 405,120 0.00 0.6 405,120 405,120 0.00 0.6
5-4-4-L 500,600 500,600 0.00 0.4 500,600 500,600 0.00 0.9 500,600 500,600 0.00 0.8 500,600 500,600 0.00 0.8
6-4-4-L 599,980 599,980 0.00 1.2 599,980 599,980 0.00 7.6 599,980 599,980 0.00 5.1 599,980 599,980 0.00 5.3
12-5-3-L 811,139 840,640 2.32 * 830,440 830,440 0.00 136.0 830,440 830,440 0.00 112.1 830,440 830,440 0.00 120.4
10-6-3-L 680,600 680,600 0.00 219.4 680,600 680,600 0.00 9.7 680,600 680,600 0.00 5.1 680,600 680,600 0.00 5.8
11-6-3-L 740,430 749,620 0.78 * 746,220 746,220 0.00 22.5 746,220 746,220 0.00 12.7 746,220 746,220 0.00 14.3
12-6-3-L 805,930 810,740 0.48 * 809,840 809,840 0.00 112.6 809,840 809,840 0.00 79.0 809,840 809,840 0.00 72.5
10-5-4-L 1,006,635 1,031,100 2.11 * 1,027,592 1,028,320 0.07 * 1,028,194 1,028,320 0.01 * 1,027,233 1,028,320 0.11 *
15-10-3-L 1,006,000 1,006,200 0.02 * 1,006,200 1,006,200 0.00 46.4 1,006,200 1,006,200 0.00 27.8 1,006,200 1,006,200 0.00 25.0
15-12-3-L 1,001,200 1,002,800 0.16 * 1,002,800 1,002,800 0.00 1.5 1,002,800 1,002,800 0.00 1.5 1,002,800 1,002,800 0.00 1.5
15-10-4-L 1,459,400 1,459,600 0.01 * 1,459,600 1,459,600 0.00 23.8 1,459,600 1,459,600 0.00 40.2 1,459,600 1,459,600 0.00 13.5
20-10-3-L 1,341,640 - 0.23 * 1,344,446 1,344,800 0.03 * 1,344,450 1,344,800 0.03 * 1,344,467 1,344,800 0.02 *
20-12-3-L 1,331,640 1,343,000 0.36 * 1,336,400 1,336,400 0.00 2.1 1,336,400 1,336,400 0.00 2.2 1,336,400 1,336,400 0.00 2.2
4-3-3-T 318,440 318,440 0.00 0.3 318,440 318,440 0.00 0.7 318,440 318,440 0.00 0.2 318,440 318,440 0.00 0.2
5-3-3-T 405,240 405,240 0.00 0.6 405,240 405,240 0.00 1.5 405,240 405,240 0.00 1.3 405,240 405,240 0.00 1.1
6-3-3-T 510,920 510,920 0.00 4.0 510,920 510,920 0.00 1.9 510,920 510,920 0.00 0.9 510,920 510,920 0.00 0.8
6-3-4-T 993,460 993,460 0.00 3.5 993,460 993,460 0.00 1.2 993,460 993,460 0.00 1.3 993,460 993,460 0.00 1.2
10-4-4-T 1,574,771 1,676,990 5.17 * 1,660,640 1,660,640 0.00 101.3 1,660,640 1,660,640 0.00 63.9 1,660,640 1,660,640 0.00 61.0
10-4-3-T 973,445 1,023,890 4.77 * 1,022,200 1,022,200 0.00 12.3 1,022,200 1,022,200 0.00 6.6 1,022,200 1,022,200 0.00 7.9
4-4-4-T 442,600 442,600 0.00 0.9 442,600 442,600 0.00 1.1 442,600 442,600 0.00 0.7 442,600 442,600 0.00 0.6
5-4-4-T 576,010 576,010 0.00 4.1 576,010 576,010 0.00 10.3 576,010 576,010 0.00 6.0 576,010 576,010 0.00 6.6
6-4-4-T 653,560 653,560 0.00 11.5 653,560 653,560 0.00 23.5 653,560 653,560 0.00 8.8 653,560 653,560 0.00 10.4
12-5-3-T 811,240 835,740 2.31 * 830,440 830,440 0.00 128.0 830,440 830,440 0.00 68.3 830,440 830,440 0.00 96.1
12-6-3-T 805,180 823,240 1.67 * 818,840 818,840 0.00 173.6 818,840 818,840 0.00 163.7 818,840 818,840 0.00 158.6
10-5-4-T 1,117,723 1,147,530 2.31 * 1,144,160 1,144,160 0.00 141.4 1,144,160 1,144,160 0.00 68.6 1,144,160 1,144,160 0.00 72.6
15-10-4-T 1,575,640 1,605,460 1.34 * 1,597,100 1,597,100 0.00 9.3 1,597,100 1,597,100 0.00 11.5 1,597,100 1,597,100 0.00 13.7
20-10-3-T 1,551,597 - 4.78 * 1,629,000 1,629,500 0.03 * 1,629,000 1,629,500 0.03 * 1,629,000 1,629,500 0.03 *
20-12-3-T 1,541,949 1,628,900 4.02 * 1,606,500 1,606,500 0.00 46.3 1,606,500 1,606,500 0.00 45.4 1,606,500 1,606,500 0.00 42.5
Average 1.113 0.0079 0.0060 0.0081
Optimal solutions 15/34 30/34 30/34 30/34
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Table 2 Computational results on instances from Venturini et al. (2017) with a total time limit of 3 hours and 18 minutes. The MIP formulation is

compared to the variants of the presented branch-and-cut-and-price method. ”*” means the time limit has been reached. The best running time is

highlighted in bold for instances solved to optimality and the best optimality gap for the rest of instances.
Instance MIP formulation Branch & Price Branch & Cut (root node) & Price Branch & Cut & Price

N-B-P-TW LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s)
4-3-3-L 296,600 296,600 0.00 0.1 296,600 296,600 0.00 0.5 296,600 296,600 0.00 0.2 296,600 296,600 0.00 0.2
5-3-3-L 394,300 394,300 0.00 0.4 394,300 394,300 0.00 3.2 394,300 394,300 0.00 7.2 394,300 394,300 0.00 7.2
6-3-3-L 421,679 421,720 0.01 2.3 421,720 421,720 0.00 0.8 421,720 421,720 0.00 0.5 421,720 421,720 0.00 0.5
6-3-4-L 647,423 647,480 0.01 89.2 647,480 647,480 0.00 39.0 647,480 647,480 0.00 111.7 647,480 647,480 0.00 103.7
10-4-4-L 1,020,581 1,055,800 3.22 * 1,054,500 1,054,500 0.00 5563.8 1,054,500 1,054,500 0.00 6068.2 1,054,300 1,054,500 0.02 *
10-4-3-L 694,451 699,000 0.52 * 698,100 698,100 0.00 193.6 698,100 698,100 0.00 72.7 698,100 698,100 0.00 115.6
4-4-4-L 405,120 405,120 0.00 0.3 405,120 405,120 0.00 0.6 405,120 405,120 0.00 0.6 405,120 405,120 0.00 0.6
5-4-4-L 500,600 500,600 0.00 0.4 500,600 500,600 0.00 0.9 500,600 500,600 0.00 0.8 500,600 500,600 0.00 0.8
6-4-4-L 599,980 599,980 0.00 1.2 599,980 599,980 0.00 7.6 599,980 599,980 0.00 5.1 599,980 599,980 0.00 5.3
12-5-3-L 813,713 834,740 2.01 * 830,440 830,440 0.00 136.0 830,440 830,440 0.00 112.1 830,440 830,440 0.00 120.4
10-6-3-L 680,600 680,600 0.00 219.4 680,600 680,600 0.00 9.7 680,600 680,600 0.00 5.1 680,600 680,600 0.00 5.8
11-6-3-L 746,220 746,220 0.00 8705.8 746,220 746,220 0.00 22.5 746,220 746,220 0.00 12.7 746,220 746,220 0.00 14.3
12-6-3-L 809,840 809,840 0.00 5032.0 809,840 809,840 0.00 112.6 809,840 809,840 0.00 79.0 809,840 809,840 0.00 72.5
10-5-4-L 1,013,114 1,029,300 1.48 * 1,028,320 1,028,320 0.00 589.0 1,028,320 1,028,320 0.00 366.1 1,028,320 1,028,320 0.00 1135.1
15-10-3-L 1,006,200 1,006,200 0.00 3259.5 1,006,200 1,006,200 0.00 46.4 1,006,200 1,006,200 0.00 27.8 1,006,200 1,006,200 0.00 25.0
15-12-3-L 1,002,240 1,002,800 0.06 * 1,002,800 1,002,800 0.00 1.5 1,002,800 1,002,800 0.00 1.5 1,002,800 1,002,800 0.00 1.5
15-10-4-L 1,459,600 1,459,600 0.00 1703.1 1,459,600 1,459,600 0.00 23.8 1,459,600 1,459,600 0.00 40.2 1,459,600 1,459,600 0.00 13.5
20-10-3-L 1,341,640 1,346,000 0.23 * 1,344,520 1,344,800 0.02 * 1,344,525 1,344,800 0.02 * 1,344,600 1,344,800 0.01 *
20-12-3-L 1,331,680 1,337,400 0.35 * 1,336,400 1,336,400 0.00 2.1 1,336,400 1,336,400 0.00 2.2 1,336,400 1,336,400 0.00 2.2
4-3-3-T 318,440 318,440 0.00 0.3 318,440 318,440 0.00 0.7 318,440 318,440 0.00 0.2 318,440 318,440 0.00 0.2
5-3-3-T 405,240 405,240 0.00 0.6 405,240 405,240 0.00 1.5 405,240 405,240 0.00 1.3 405,240 405,240 0.00 1.1
6-3-3-T 510,920 510,920 0.00 4.0 510,920 510,920 0.00 1.9 510,920 510,920 0.00 0.9 510,920 510,920 0.00 0.8
6-3-4-T 993,460 993,460 0.00 3.5 993,460 993,460 0.00 1.2 993,460 993,460 0.00 1.3 993,460 993,460 0.00 1.2
10-4-4-T 1,660,640 1,660,640 0.00 1660.0 1,660,640 1,660,640 0.00 101.3 1,660,640 1,660,640 0.00 63.9 1,660,640 1,660,640 0.00 61.0
10-4-3-T 1,022,200 1,022,200 0.00 562.5 1,022,200 1,022,200 0.00 12.3 1,022,200 1,022,200 0.00 6.6 1,022,200 1,022,200 0.00 7.9
4-4-4-T 442,600 442,600 0.00 0.9 442,600 442,600 0.00 1.1 442,600 442,600 0.00 0.7 442,600 442,600 0.00 0.6
5-4-4-T 576,010 576,010 0.00 4.1 576,010 576,010 0.00 10.3 576,010 576,010 0.00 6.0 576,010 576,010 0.00 6.6
6-4-4-T 653,560 653,560 0.00 11.5 653,560 653,560 0.00 23.5 653,560 653,560 0.00 8.8 653,560 653,560 0.00 10.4
12-5-3-T 817,533 830,440 1.55 * 830,440 830,440 0.00 128.0 830,440 830,440 0.00 68.3 830,440 830,440 0.00 96.1
12-6-3-T 810,476 821,540 1.02 * 818,840 818,840 0.00 173.6 818,840 818,840 0.00 163.7 818,840 818,840 0.00 158.6
10-5-4-T 1,144,160 1,144,160 0.00 3649.8 1,144,160 1,144,160 0.00 141.4 1,144,160 1,144,160 0.00 68.6 1,144,160 1,144,160 0.00 72.6
15-10-4-T 1,584,071 1,597,620 0.82 * 1,597,100 1,597,100 0.00 9.3 1,597,100 1,597,100 0.00 11.5 1,597,100 1,597,100 0.00 13.7
20-10-3-T 1,552,283 1,634,900 4.74 * 1,629,380 1,629,500 0.01 * 1,629,300 1,629,500 0.01 * 1,629,380 1,629,500 0.01 *
20-12-3-T 1,545,006 1,609,100 3.83 * 1,606,500 1,606,500 0.00 46.3 1,606,500 1,606,500 0.00 45.4 1,606,500 1,606,500 0.00 42.5
Average 0.584 0.0008 0.0010 0.0012
Optimal solutions 24/34 32/34 32/34 31/34
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Table 3 Computational results on the set of harder instances with a total time limit of 5 minutes and 30 seconds. The MIP formulation is compared to

the variants of the presented branch-and-cut-and-price method. ”-” means that no integer solution has been found within the time limit. ”*” means the time

limit has been reached. The best running time is highlighted in bold for instances solved to optimality and the best optimality gap for the rest of instances.

Instance MIP formulation Branch & Price Branch & Cut (root node) & Price Branch & Cut & Price
N-B-P-TW LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s)

25-12-3-L 1,668,080 - 0.56 * 1,677,200 1,677,400 0.01 * 1,677,200 1,677,400 0.01 * 1,677,200 1,677,400 0.01 *
25-12-3-T 1,923,560 - 6.03 * 2,046,930 2,047,100 0.00 * 2,046,933 2,047,200 0.00 * 2,046,933 2,047,200 0.00 *
12-5-4-L 1,201,546 1,253,160 3.50 * 1,239,277 1,245,360 0.47 * 1,240,826 1,247,760 0.35 * 1,240,862 1,247,060 0.35 *
12-5-4-T 1,324,428 - 5.69 * 1,398,848 1,410,270 0.39 * 1,399,631 1,408,070 0.33 * 1,398,580 1,408,220 0.41 *
30-12-3-L 1,997,400 - 0.95 * 2,016,178 2,016,600 0.02 * 2,016,178 2,016,600 0.02 * 2,016,178 2,016,600 0.02 *
30-12-3-T 2,304,432 - 7.55 * 2,491,406 2,496,900 0.04 * 2,491,406 2,495,300 0.04 * 2,491,406 2,495,600 0.04 *
20-12-4-L 1,934,640 - 0.47 * 1,943,486 1,943,800 0.02 * 1,943,500 1,943,800 0.02 * 1,943,800 1,943,800 0.00 243.7
20-12-4-T 3,050,995 - 2.00 * 3,113,170 3,113,170 0.00 42.5 3,113,170 3,113,170 0.00 15.8 3,113,170 3,113,170 0.00 14.9
15-8-4-L 1,471,903 1,508,500 1.68 * 1,495,225 1,497,100 0.12 * 1,496,131 1,497,300 0.06 * 1,496,118 1,497,100 0.06 *
15-8-4-T 1,599,496 - 3.41 * 1,654,848 1,656,260 0.07 * 1,655,376 1,656,260 0.04 * 1,655,416 1,656,260 0.04 *
25-12-4-L 2,419,800 - 0.85 * 2,439,377 2,440,700 0.05 * 2,439,531 2,440,600 0.04 * 2,439,380 2,441,500 0.05 *
25-12-4-T 3,560,100 - 3.97 * 3,706,995 3,707,390 0.01 * 3,707,182 3,707,390 0.01 * 3,707,390 3,707,390 0.00 *
30-15-4-L 2,905,000 - 0.47 * 2,918,400 2,918,800 0.01 * 2,918,420 2,918,800 0.01 * 2,918,436 2,918,800 0.01 *
30-15-4-T 3,109,816 - 5.14 * 3,274,118 3,278,880 0.13 * 3,274,390 3,283,550 0.12 * 3,274,441 3,280,400 0.12 *
40-15-3-L 2,658,400 - 1.15 * 2,689,060 2,689,200 0.01 * 2,689,060 2,689,200 0.01 * 2,689,060 2,689,200 0.01 *
40-15-3-T 3,067,200 - 7.89 * 3,329,567 3,330,900 0.02 * 3,329,567 3,330,900 0.02 * 3,329,567 3,331,300 0.02 *
Average 3.206 0.0849 0.0665 0.0698
Optimal solutions 0/16 1/16 1/16 3/16
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Table 4 Computational results on the set of harder instances with a total time limit of 3 hours and 18 minutes. The MIP formulation is compared to the

variants of the presented branch-and-cut-and-price method. ”-” means that no integer solution has been found within the time limit. ”*” means the time

limit has been reached. The best running time is highlighted in bold for instances solved to optimality and the best optimality gap for the rest of instances.
Instance MIP formulation Branch & Price Branch & Cut (root node) & Price Branch & Cut & Price

N-B-P-TW LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s)
25-12-3-L 1,668,080 1,679,400 0.56 * 1,677,200 1,677,400 0.01 * 1,677,200 1,677,400 0.01 * 1,677,200 1,677,400 0.01 *
25-12-3-T 1,932,150 - 5.61 * 2,046,930 2,047,100 0.00 * 2,046,933 2,047,100 0.00 * 2,046,933 2,047,000 0.00 *
12-5-4-L 1,205,096 1,253,160 3.22 * 1,244,427 1,245,660 0.06 * 1,245,110 1,245,160 0.00 * 1,244,080 1,245,160 0.09 *
12-5-4-T 1,348,176 1,407,980 4.00 * 1,404,280 1,404,280 0.00 5126.1 1,404,280 1,404,280 0.00 9530.6 1,403,243 1,405,760 0.07 *
30-12-3-L 1,998,483 - 0.90 * 2,016,178 2,016,600 0.02 * 2,016,178 2,016,600 0.02 * 2,016,178 2,016,600 0.02 *
30-12-3-T 2,311,705 - 7.25 * 2,491,406 2,492,500 0.04 * 2,491,406 2,492,500 0.04 * 2,491,406 2,492,500 0.04 *
20-12-4-L 1,934,640 - 0.47 * 1,943,800 1,943,800 0.00 2544.5 1,943,800 1,943,800 0.00 1202.7 1,943,800 1,943,800 0.00 243.7
20-12-4-T 3,055,040 - 1.87 * 3,113,170 3,113,170 0.00 42.5 3,113,170 3,113,170 0.00 15.8 3,113,170 3,113,170 0.00 14.9
15-8-4-L 1,475,646 1,497,000 1.43 * 1,497,000 1,497,000 0.00 2870.3 1,497,000 1,497,000 0.00 968.3 1,497,000 1,497,000 0.00 1831.1
15-8-4-T 1,608,977 1,671,220 2.84 * 1,656,040 1,656,040 0.00 746.7.3 1,656,040 1,656,040 0.00 1365.a 1,656,040 1,656,040 0.00 1534.0
25-12-4-L 2,420,034 - 0.84 * 2,439,594 2,440,500 0.04 * 2,439,796 2,440,500 0.03 * 2,439,881 2,440,500 0.03 *
25-12-4-T 3,572,971 - 3.63 * 3,707,390 3,707,390 0.00 604.3 3,707,390 3,707,390 0.00 501.1 3,707,390 3,707,390 0.00 440.8
30-15-4-L 2,905,000 - 0.47 * 2,918,400 2,918,800 0.01 * 2,918,425 2,918,800 0.01 * 2,918,441 2,918,600 0.01 *
30-15-4-T 3,123,445 - 4.72 * 3,274,905 3,278,280 0.10 * 3,275,095 3,278,280 0.10 * 3,275,112 3,278,940 0.10 *
40-15-3-L 2,658,440 - 1.14 * 2,689,060 2,689,200 0.01 * 2,689,060 2,689,200 0.01 * 2,689,060 2,689,200 0.01 *
40-15-3-T 3,071,346 - 7.77 * 3,329,567 3,330,300 0.02 * 3,329,567 3,330,200 0.02 * 3,329,567 3,330,100 0.02 *
Average 2.919 0.0192 0.0148 0.0243
Optimal solutions 0/16 6/16 6/16 5/16



Martin-Iradi, Pacino, and Ropke: The multi-port berth allocation problem with speed optimization
Article submitted to ; manuscript no. 35

Table 5 Performance of presented methods on a subset of five instances.

Instance Branch & Price

N-B-P-TW
Gap
(%)

T
(s)

T RMP
(%)

T PP
(%)

T Sep
(%)

T Branch
(%)

T GSPP
(%)

Nodes CG Its Cols Cuts

12-6-3-T 0.00 174 75.8 19.6 0.0 1.5 0.0 219 3,820 16,928 0
10-4-4-L 0.00 5,564 89.2 10.3 0.0 0.1 0.0 233 14,745 91,489 0
20-10-3-L 0.02 11,031 28.7 28.8 0.0 18.7 0.0 13,907 45,145 112,557 0
15-8-4-L 0.00 2,870 48.3 49.8 0.0 0.6 0.0 327 7,553 48,756 0

40-15-3-T 0.02 11,097 74.3 10.5 0.0 2.6 2.1 899 6,678 99,529 0
Instance Branch & Cut (root node) & Price

N-B-P-TW
Gap
(%)

T
(s)

T RMP
(%)

T PP
(%)

T Sep
(%)

T Branch
(%)

T GSPP
(%)

Nodes CG Its Cols Cuts

12-6-3-T 0.00 164 88.3 9.1 0.4 0.9 0.0 45 1,356 7,215 567
10-4-4-L 0.00 6,068 95.3 4.4 0.1 0.1 0.0 81 5,667 35,916 382
20-10-3-L 0.02 11,089 28.5 26.8 4.1 17.8 0.0 15,421 49,256 131,616 24
15-8-4-L 0.00 968 69.8 27.8 0.4 1.1 0.0 49 1,417 10,629 861

40-15-3-T 0.02 11,022 68.9 12.2 1.4 3.3 1.3 903 6,390 94,066 20
Instance Branch & Cut & Price

N-B-P-TW
Gap
(%)

T
(s)

T RMP
(%)

T PP
(%)

T Sep
(%)

T Branch
(%)

T GSPP
(%)

Nodes CG Its Cols Cuts

12-6-3-T 0.00 159 85.2 10.9 1.6 1.0 0.0 43 1,426 7,071 1,382
10-4-4-L 0.02 11,120 93.6 3.3 0.2 0.0 2.7 61 6,755 38,497 3,716
20-10-3-L 0.01 11,062 28.0 28.7 11.6 12.9 0.0 12,681 49,949 118,332 32,198
15-8-4-L 0.00 1,831 81.1 17.5 0.6 0.5 0.0 31 1,660 11,727 2,236

40-15-3-T 0.02 11,180 73.1 9.6 6.5 1.2 3.1 515 5,547 79,677 7,124

The results show a better performance of the solution methods based on the GSPP formula-

tion. All variants of the branch-and-cut-and-price method are able to find optimal or near-optimal

solutions in less than 6 minutes. Among the new proposed methods, the one where cutting is per-

formed at the root node shows a better performance. All the solution method variants outperform

CPLEX in all instances that require more than 4 seconds to solve and show similar running times

for the faster ones. The difference in performance is more notable on the set of harder instances

where CPLEX is not able to find a feasible integer solution in 11 out of the 16 instances within

3 hours and 18 minutes and the average optimality gap is above 2.9 %. Within 5 minutes and

30 seconds, the proposed new methods not only find feasible solutions to all instances but also

achieve an optimality gap of 0.03 %. This gap is further reduced to less than 0.01 % with a time

limit of 3 hours and 18 minutes. The good quality of the solutions in such a short computational

time is attractive from an operational point of view where suboptimal solutions usually are not a

problem and possible disruptions require rapid computations for new plans. Regarding the impact

of solving the GSPP at the end, it is higher when the time limits are low. The GSPP is only solved

if the method still has not proven optimality and, from those cases, it is found that the GSPP

improves the upper bound in 84-100% of the cases with the 5 minutes and 30 seconds time limit

and in 50-57% of the cases with the 3 hours and 18 minutes, depending on the method. In the vast

majority of these cases, an integer solution is not found in the B&B tree.

Table 5 provides a more detailed comparison of the proposed method variants for 5 instances that

aim to be representative of the entire set of 50 instances. The first column indicates the instance,
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Table 6 Optimality gap to optimal or best known solution at the root node.

Instance MIP formulation Without cuts With sol-based cuts With all cuts
N-B-P-TW Gap (%) T (s) Gap (%) T (s) Gap (%) T (s) Gap (%) T (s)

12-6-3-T 2.03 0.3 0.36 2 0.22 5 0.22 87
10-4-4-L 4.69 0.1 0.22 15 0.15 102 0.15 1,137
20-10-3-L 0.36 0.2 0.03 2 0.03 2 0.03 143
15-8-4-L 2.11 0.2 0.25 19 0.12 43 0.12 499
40-15-3-T 7.89 1.2 0.02 280 0.02 285 0.02 685
Average 50 instances 3.97 0.3 0.23 18 0.0865 25 0.0863 315

the second and third column recap the optimality gap and computational time spent given the

time-limit of 3 hours and 18 minutes. The fourth to eighth columns indicate the percentage amount

of time spent by the algorithm in the RMP, pricing problems (PPs), cut separation process (Sep),

branching procedure (Branch), and the final GSPP model respectively. The pricing problems are

solved in parallel on the four cores used. It should also be noticed that the branching time not

only includes the selection of the branching candidate but also, the child nodes creation, which in

the case of our algorithm, requires intensive data structure manipulation. The number of nodes

explored in the B&B tree is displayed in the ninth column. The last three columns indicate the

number of column generation iterations, generated columns and added cuts respectively.

The RMP takes most of the time for most of the instances, and the cut separation has an

insignificant impact except when it is applied in every B&B node. The time spent in branching

procedures grows in accordance to both the size of the RMP and B&B tree. The short RMP solving

times and large amount of columns generated for instance 20−10−3−L suggest that the RMP is

easy to solve and the existence of many equivalent or similar solutions. This increases the impact of

other internal operations in the algorithm. The number of B&B nodes explored grows inversely to

the amount of nodes where cutting is allowed. It can be observed that the full branch-and-cut-price

performs more column generation iterations than the one with only cutting in the root node but it

also requires longer computational times. As it can be observed, the time percentages do not sum

exactly to 100%. The remaining time accounts to diverse internal operations in the implementation

which are not strictly linked to any of the main parts of the algorithm. This also suggests that

there is room for improvement in the implementation of the algorithm.

The effectiveness of the aforementioned cut separation process is displayed in Table 6. The

optimality gap of the LP solution at the root node is shown for the subset of five instances studied

in detail together with the average across all 50 instances. The second column denotes the LP

solution at the root node for the MIP formulation. The third column refers to the presented

method without adding any cuts whereas the fourth column considers the proposed cut separation

procedure (Algorithm 2) based on solution values (i.e., sol-based). This procedure only checks a

subset of the valid inequalities which we believe that contains most, if not all, of the violated
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Table 7 Solving time comparison between the network flow problem and the branch-and-price method.

Instance Graph size Network flow problem Branch & Price
N-B-P-TW Nodes Arcs T(s) T(s)
4-3-3-L 1,621 44,989 5.4 0.5
5-3-3-L 2,711 1,669,872 383 3.2
6-3-3-L 2,711 2,353,886 517 0.8
6-3-4-L 5,414 8,659,488 2,504 39.0

Table 8 Average performance of different branching strategies across all 50 instances using the

branch-and-cut-and-price method with only cutting allowed in the root node.

Branching strategy
Best first on
single node

Strong branching
on berthing time

Best first on
berthing position

Best first on
berthing time

Average gap (%) 0.058 0.011 0.009 0.005
Optimal solutions 16/50 37/50 39/50 38/50

ones. In any case, we can find all violated inequalities by simple enumeration. This case, where all

violated valid inequalities (i.e., all cuts) are added, has also been tested and the results are shown

in the last column. The improvement in the lower bound is significant for the proposed methods

where the cut separation is able to further improve it achieving an average gap of 0.09 %. Adding

all possible cuts only leads to an average improvement of 0.0002 % in the bound. However, the

algorithm requires 12 times more computational time to solve the root node. It is therefore decided

to discard this variant of the separation procedure given the slow performance and the insignificant

gain.

As mentioned in section 4.1, when having a pure shortest path as a pricing problem, solving

the LP relaxation of the network flow problem gives the same bound as column generation on the

GSPP but the network flow problem is expected to require more time and memory resources on

instances with dense graphs. In order to verify that, the network flow problem has been solved

for the first four instances which are considered among the easiest ones from the entire set. The

solving times of the network flow problem and the branch-and-price method are compared in Table

7. The complexity of the graph is shown by the high solving times for the network flow problem

where the proposed model is between 10 and more than 500 times faster. The rest of instances

have not been further analyzed as most of them were reaching the memory limit. The number of

nodes and arcs for all the instances are documented in Table 13 in Appendix C.

Apart from the presented methods, slight variations have been tested which helped to select the

best algorithm procedure. For instance, we have tried to generate all columns a priori without

success. The complexity of the problem and the exponentially large numbers of columns make it

intractable. Regarding branching procedures, an alternative method of exploring the B&B tree

known as strong branching has been tested. This strategy requires to select a number of candidates

(between 5 and 10 in our case) and compute, or at least estimate, the lower bounds at the child
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nodes. For each candidate, a weighted sum of the child bounds is computed and the candidate with

the best weighted sum is selected. In this case, a weight of 0.75 is set for the child with the lowest

bound and a weight of 0.25 for the other child. This method has proven to create better branches

and, for example, is able to find an optimal solution to instance 20-10-3-T in less than 20 minutes.

Nevertheless, the overall worse optimality gap and additional time consumed exploring more nodes

has lead us to discard it. A different branching strategy has been tested where the branching is

done on berthing positions instead of on berthing times at a port. This strategy is able to solve all

the instances from Venturini et al. (2017) to optimality and one more instance in overall than the

presented method. However, the overall worse optimality gap indicates a poorer performance on

the set of harder instances (see Table 14 in Appendix C). In addition, a trivial branching on a single

node has also been tested to compare the effectiveness of the proposed branching strategy. The

solution values of the columns are added on the graph nodes of the respective paths, computing

in this way the ”usage” of each graph node. Then, the graph node whose value is closer to 0.5

(i.e., most fractional) is the one selected to branch on. A summary of the performance of these

alternative branching strategies is displayed in Table 8 and the results for all instances can be

found in Table 14 in Appendix C.

6.2. Cooperative game theory results

The two methods for allocating the costs have been tested in the same set of instances. Three

Table 9 Carrier ship share and priority for the instances.

Carrier A B C
% of ships 50 25 25
Priority 1 2 3

carriers A,B and C have been defined for all instances each of them with an assigned priority

and a number of ships (see Table 9). This priority is often given in accordance to the handling

volume (Imai, Nishimura, and Papadimitriou 2003). For instance, carrier A can be seen as a large

carrier and often this translates in more power of decision and a higher priority at the port. The

Table 10 Terminal denomination.

Terminal D E F G
Visit position 1 2 3 4

terminal operator at each visited port is also a player in the game. In this study, all ships visit the

ports in the same order as shown in Figure 10, but the game can equally be applied to instances

with different visit orders. Thus, depending on the instance’s number of ports, the game is formed
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by either 6 or 7 players. The number of possible coalitions is given by 2|P| where |P| denotes the

number of players, and in this case, corresponds to 64 or 128 coalitions respectively.

The overall cooperative game is based on what we denote as the standalone solution. This solution

reflects the scenario where a single carrier negotiates with a single terminal at a time in order to

decide the schedule for the carriers’ vessels. We apply a greedy heuristic to compute this solution

where we optimize and fix the schedule of a carrier’s ships one port at a time. The sequence of

carriers and ports used by the heuristic is given by the carrier’s priority at port (see Table 9) and

the position of the port visited (see Table 10). For example, assume ship 1 is carrier A’s only ship

and visits first port D and then port E where it has the highest priority. We then optimize the

schedule of ship 1 for port D, fix the decisions and then optimize the schedule of ship 1 for port E.

Once the port visits of a carrier’s ships are scheduled, the ships of the next carrier with the highest

priority are scheduled within the remaining available berthing positions and time windows.

This sequential planning approach resembles the actual procedure in some ports when the carriers

book the port calls and they are assigned based on different priority schemes. Due to the heuristic

nature of the process, some of the carriers may not find a feasible schedule. In order to avoid this

and still ensure a fair comparison, the operational time windows of all berthing positions have been

increased by 20% in the tests performed in this section.

The different coalitions S ⊆ P can be classified into three groups, depending on the type of

players forming it:

• Coalitions formed by carriers only. For the problem at hand this form of collaboration does not

provide any planning advantage as the carriers require collaboration with the terminal operators

to improve their planning. Therefore, the solution of this type of coalition corresponds to the

standalone solution.

• Coalitions formed by terminal operators only. For the problem at hand this form of collabora-

tion does not provide any planning advantage as the terminal operators require collaboration with

the carriers to improve their planning. Therefore, the solution of this type of coalition corresponds

to the standalone solution.

• Coalitions formed by both carriers and terminal operators. This type of coalition is the basis

for the MPBAP. In order to compute a solution to a given coalition, we assume that the planning

of all players that are not part of the coalition are kept fixed as in the standalone solution. Then,

the MPBAP is solved for the coalition given the available berthing space and time at the terminals.

Note that when more players are part of the coalition, fewer port calls of the standalone solution

need to be fixed. In addition, it can be noticed that optimal solutions to coalitions formed by

a single carrier and a single operator are equivalent to the standalone solution. We believe this

minimal collaboration resembles the real-life port call booking process for carriers.
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Table 11 Comparison of the two cost allocation methods across instances with three ports.

Player Cost Shapley value Equal profit method (EPM)

S ϑ(S) fi
Relative

savings (%)

% of total

costs
fi

Relative

savings (%)

% of total

costs

C
a
rr

ie
r A 485,261 478,464 1.5 39.1 471,601 3.3 38.4

B 247,053 242,800 2.2 20.0 240,685 3.1 19.8
C 251,485 246,914 2.4 20.9 245,092 3.1 20.7

T
e
r
m

in
a
l D 88,635 79,042 10.7 7.0 86,058 3.4 7.5

E 75,221 70,789 6.9 6.4 73,059 3.3 6.7
F 75,296 71,546 5.8 6.6 73,060 3.2 6.8

Grand
coalition

1,189,555

Table 12 Comparison of the two cost allocation methods across instances with four ports.

Player Cost Shapley value Equal profit method (EPM)

S ϑ(S) fi
Relative

savings (%)

% of total

costs
fi

Relative

savings (%)

% of total

costs

C
a
rr

ie
r A 352,695 347,232 1.7 37.7 339,450 4.0 36.8

B 187,320 181,789 3.1 20.5 179,622 4.3 20.2
C 192,634 187,148 3.1 20.9 184,727 4.4 20.6

T
e
rm

in
a
l D 46,264 40,908 11.7 4.6 44,464 4.0 5.0

E 44,079 38,207 14.1 4.1 42,215 4.4 4.6
F 66,496 60,718 8.5 6.3 63,629 3.9 6.6
G 60,346 55,765 7.6 5.9 57,659 3.9 6.1

Grand
coalition

911,766

The premise of fixing the port calls of non-collaborators, ensures that, in the worst case, the

standalone solution is feasible for any coalition S ⊆P. As indicated in Section 3.2, carriers and ter-

minal operators have different operational costs. This is also reflected in the characteristic function,

where the costs of each player are measured differently. On one side, the carrier’s cost comprise

the fuel consumption costs, waiting time costs and half of the delay costs. On the other side, the

terminal operator’s cost comprise the handling costs and the remaining half of the delay costs. The

process of quantifying the delay costs in this type of problems is complex and it has been decided

to equally split the delay costs between carriers and terminal operators.

As shown in Section 6.1, the grand coalition scenario for some instances are not solved to opti-

mality, but the proposed methods are able to find solutions within a very small gap in less than 6

minutes (see Tables 1 and 3). It is assumed, that all the subcoalition scenarios are at most, as hard

to solve as the grand coalition one and, therefore, a time limit of 5 minutes, and an additional 30

seconds to solve the GSPP, is set to solve each coalition scenario of the game.

All instances have a non-empty core, meaning that both efficient and stable solutions can be

found in all scenarios. Tables 11 and 12 show the average cost allocations to each of the carriers

and terminal operators across instances with 3 and 4 ports respectively (24 out of the 50 instances
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have 4 ports). For each allocation method we display three columns, (i) the first column indicates

the cost allocation to the carrier when being part of the grand coalition, (ii) the second column

computes the percentual savings compared with the player’s standalone cost and (iii) the third

column shows the percentage of the overall costs allocated to each player. Both allocation methods

show that significant savings can be achieved by all of the players involved. In fact, player A, which

in theory may be the least interested in engaging in such grand coalitions due to its high priority at

all ports, achieves significant savings. The same applies to terminal D, which is the first one visited

by the ships, and can benefit substantially by the overall better planning of the rest of terminals.

The differences in the allocation strategy used by the two methods are noticeable. The EPM tends

to equalize the relative savings of all players whereas the Shapley value is prone to balance the

absolute savings.

As mentioned in Section 1, we conceive that the solution to the MPBAP and the cost allocation

methods could be provided as a service by third party software companies. To establish the side

payments in practice, players would need to commit to the service for a pre-established period and

agree with the potential savings estimated by the third party. This is required in order to define

the number of participants in the collaboration. Moreover, to measure the savings of the MPBAP

solution, we need an estimate of the standalone costs of each player in a non-collaborative scenario.

The third party could estimate this cost for each player using the current planning software and

we assume that the player would agree to that estimate. Once the agreement is in place, the third

party could be used as a proxy for the side payments, which could be performed on a regular basis.

Based on the actual costs, each player would need to make or receive a payment to align with the

projected savings that the player has agreed to.

Similar collaboration is already taking place in real-life in tramp shipping where it is common

that a number of ship owners place their ships in a shipping pool under the control of a pool

administrator (the analog to the third party coordinator) that takes over most of the business

decisions regarding the ships and is responsible for distributing earnings to ship owners (Packard

1995, Wen et al. 2019).

7. Conclusions and future work

A novel solution method based on a GSPP formulation has been presented for the MPBAP. The

method exploits a graph formulation for defining the berthing plan of a ship along its route. This,

combined together with delayed column generation, additional valid inequalities and symmetry

breaking constraints results in an efficient algorithm able to find optimal or near-optimal solutions

to wide range of instances outperforming the capacity of commercial solvers.

In addition, the graph formulation adds flexibility as many additional constraints can be easily

integrated with simple alterations in the graph. For instance, a finer discretization of the berthing
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positions would allow to approximate the continuous version of the MPBAP better. Considering

a continuous berth is a more realistic approach and allows to increase the usage of the quay.

Transhipments are also an important aspect of the operations at port and the fulfillment of them are

crucial in some cases (e.g., when transporting perishable food). Our model could eventually account

for that by limiting the time window of the ships involved in the transhipment and penalizing

late arrivals of the incoming ship or too early departures of the outgoing ship. Nevertheless, this

could be better modelled if the relative arrival and departure times are considered. That case

is harder to incorporate in the presented model and it would require additional constraints for

each transhipment in the RMP. The transit times between ports could be further improved by

considering the time needed to enter and leave the port which is usually performed at a slower

speed (Reinhardt et al. 2016).

The instances solved reflect the size of real-life scenarios to a large extent. However, some of the

instance parameters could be further improved. This comprises improving the size of the vessel

time windows, having different routes for the ships, different amount of berthing positions per port

and different ship types.

Alternative branching methods have also shown great potential, especially branching on berthing

positions as opposed to branching on berthing times. A natural next step would be to explore

a branching method that combines both of them. For instance, one could test both methods

simultaneously when branching and select the one with better bounds at the children nodes.

A natural extension of the problem could be to integrate the berth allocation with the quay crane

assignment problem (QAP). Studies such as Iris et al. (2015) and Iris, Pacino, and Røpke (2017)

have already shown the effectiveness of heuristic and exact methods based on a GSPP formulation

for the integrated problem in one terminal.

Last but not least, the benefits for both ship carriers and terminal operators are verified defining

a cooperative game and using cost allocation methods to distribute the costs of such collaboration

fairly. The results of the cooperative game strengthen the viability of such a decision tool and can

encourage carriers and port operators to participate in collaborative schemes.
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Appendix A: Reduced cost computation including valid inequalities (33)

We denote βn,p,bt1,t2
to the dual variable of constraint (33) for ship n ∈N , port p ∈ P , berth b ∈Bp and times

t1, t2 ∈ [sp,b;ep,b], t1 < t2 and let β̄n,p,bt1,t2
be its value for the RMP solution. Let w(p, b, t)∈O be the graph node

related to berthing at port p∈ P at position b∈Bp at time t∈ [sp,b;ep,b] and let Φ = {(n,p, b, t1, t2)} be the

set of constraints (33) added to the RMP denoted by (n,p, b, t1, t2) elements where n ∈ N , p ∈ P , b ∈ Bp
and t1, t2 ∈ [sp,b;ep,b], t1 < t2. Additionally, let Φ(k, p, b, t) ⊆ Φ be the set of valid inequalities that include

arcs from the graph node w(p, b, t) for a given ship k. By definition the range of nodes for each ship within

a valid inequality differ if k = n or k 6= n. Therefore we denote Φk=n(k, p, b, t),Φk 6=n(k, p, b, t) ⊆ Φ(k, p, b, t)

to the subset of cuts (n,p, b, t1, t2) where k = n and k 6= n respectively, that together form the entire set

Φ(k, p, b, t) = Φk=n(k, p, b, t)∪Φk 6=n(k, p, b, t) and are defined mathematically as follows:

Φk=n(k, p, b, t) =
{

(n,p, b, t1, t2)|k= n,w(p, b, t)∈
⋃

t∈[t1;t2]

C(k, p, b, t)
}

Φk 6=n(k, p, b, t) =
{

(n,p, b, t1, t2)|k 6= n,w(p, b, t)∈C(k, p, b, t1)∩C(k, p, b, t2)
}

The computation of the reduced cost ĉj for column j of ship k ∈N is updated as follows:

ĉj = cj −
( ∑

(p,b,t)∈Λj

(
∑

t′∈[t;t+hp,b
k

)

µ̄p,b,t′)− (
∑

(n,p,b,t1,t2)∈Φ(k,p,b,t)

β̄n,p,bt1,t2
)
)
− ᾱk

Appendix B: Adaption of the proposed valid inequality considering berth types

Proposition 2. Given two time instants t1, t2 ∈ [sp,k, ep,k) where t1 < t2 and a port p ∈ P , berth type

k ∈Kp and ship n∈N , the following is a valid inequality:∑
u∈

⋃
t∈[t1;t2]C(n,p,k,t)

∑
w∈δ+n (u)

xnu,w +
∑

m∈N\{n}

∑
u∈C(m,p,k,t1)∩C(m,p,k,t2)

∑
w∈δ+m(u)

xmu,w 6 β
k

Proof. Constraint (34) has been adapted from constraint (30) which is a direct translation from constraint

(26) from the network-flow formulation. Therefore, constraint (34) can be formulated as a network-flow

problem constraint as follows:∑
m∈N

∑
i∈C(m,p,k,t)

∑
j∈δ+m(i)

xmi,j ≤ βk ∀p∈ P,k ∈Kp, t∈ [sp,k;ep,k)

where the C(m,p,k, t) defines the set of nodes for ship m∈N that are in conflict with time t∈ [sp,k;ep,k) in

berth type k ∈Kp of port p ∈ P . Based on this definition, the intersection set C(m,p,k, t1)∩C(m,p,k, t2)

directly defines the set of nodes for ship m that are in conflict with both time instants t1 and t2. Constraint

(34) indicates that at most βk (i.e., number of berths of type k ∈Bk) arcs can be chosen out of the nodes from

the sets C(m,p,k, t) of all ships m∈N and, therefore, the same applies to the intersection sets C(m,p,k, t1)∩

C(m,p,k, t2). Based on the premise that each ship can only berth in one position, we can relax the requirement

of being in conflict with both t1 and t2 for a single ship n and only require it to be in conflict with t1 or t2.

In practice, this means, on one hand, that if ship n berths at a period covering t1 or t2, then, at most βk−1

ships m ∈N\{n} can berth in a period covering both t1 and t2. On the other hand, if βk ships m ∈N\{n}

are berthing at times whose periods cover t1 and t2, then ship n is not able to berth at a period covering



Martin-Iradi, Pacino, and Ropke: The multi-port berth allocation problem with speed optimization
44 Article submitted to ; manuscript no.

t1 or t2. The relaxed node interval for ship n can be defined as the union of C(n,p, k, t1) ∪ C(n,p, k, t2).

Considering these node sets, we can define the following valid inequality:∑
u∈C(n,p,k,t1)∪C(n,p,k,t2)

∑
w∈δ+n (u)

xnu,w +
∑

m∈N\{n}

∑
u∈C(m,p,k,t1)∩C(m,p,k,t2)

∑
w∈δ+m(u)

xmu,w 6 β
k

∀p∈ P,k ∈Kp, n∈N, t1, t2 ∈ [sp,k, ep,k), t1 < t2

Based on the assumption that a berthing period cannot be discontinued, the intersection set C(m,p,k, t1)∩
C(m,p,k, t2) for any ship is not only in conflict with times t1 and t2 but with all the time instants in the

period [t1; t2]. Therefore the interval for ship n can be expanded to the union of C(n,p, k, t) sets for all time

instants t∈ [t1; t2] and the resulting valid inequality can be formulated as follows:

∑
u∈

⋃
t∈[t1;t2]C(n,p,k,t)

∑
w∈δ+n (u)

xnu,w +
∑

m∈N\{n}

∑
u∈C(m,p,k,t1)∩C(m,p,k,t2)

∑
w∈δ+m(u)

xmu,w 6 β
k

∀p∈ P,k ∈Kp, n∈N, t1, t2 ∈ [sp,k, ep,k), t1 < t2

�

Appendix C: Additional computational results
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Bektaş T, Ehmke JF, Psaraftis HN, Puchinger J, 2019 The role of operational research in green freight

transportation. European Journal of Operational Research 274(3):807–823, URL http://dx.doi.org/

10.1016/j.ejor.2018.06.001.

Bezanson J, Edelman A, Karpinski S, Shah VB, 2017 Julia: A fresh approach to numerical computing. Siam

Review 59(1):65–98, URL http://dx.doi.org/10.1137/141000671.

Bierwirth C, Meisel F, 2015 A follow-up survey of berth allocation and quay crane scheduling problems in

container terminals. European Journal of Operational Research 244(3):12689, 675–689, URL http:

//dx.doi.org/10.1016/j.ejor.2014.12.030.

Brouer BD, Pisinger D, Spoorendonk S, 2011 Liner shipping cargo allocation with repositioning of empty

containers. INFOR Journal 49(2):109–124, URL http://dx.doi.org/10.3138/infor.49.2.109.

Buhrkal KF, Zuglian S, Røpke S, Larsen J, Lusby RM, 2011 Models for the discrete berth allocation problem:

A computational comparison. Transportation Research. Part E: Logistics and Transportation Review

47(4):461–473, URL http://dx.doi.org/10.1016/j.tre.2010.11.016.

Carlo HJ, Vis IF, Roodbergen KJ, 2014 Transport operations in container terminals: Literature overview,

trends, research directions and classification scheme. European Journal of Operational Research

236(1):1–13, URL http://dx.doi.org/10.1016/j.ejor.2013.11.023.

Chang YT, Tongzon J, Luo M, Lee PTW, 2012 Estimation of optimal handling capacity of a container

port: An economic approach. Transport Reviews 32(2):241–258, URL http://dx.doi.org/10.1080/

01441647.2011.644346.



Martin-Iradi, Pacino, and Ropke: The multi-port berth allocation problem with speed optimization
Article submitted to ; manuscript no. 45

Table 13 Number of nodes and arcs in graph G for each of the instances. An horizontal line is used to indicate

the separation between the set of benchmark instances by Venturini et al. (2017) and the newly generated set of

harder instances.

Instance Graph size Instance Graph size
N-B-P-TW Nodes Arcs N-B-P-TW Nodes Arcs
4-3-3-L 1,621 44,989 4-4-4-T 3,948 1,239,853
5-3-3-L 2,711 1,669,872 5-4-4-T 3,948 1,498,010
6-3-3-L 2,711 2,353,886 6-4-4-T 3,948 1,318,353
6-3-4-L 5,414 8,659,488 12-5-3-T 3,217 2,572,191
10-4-4-L 7,218 25,069,050 12-6-3-T 3,860 3,586,436
10-4-3-L 3,614 6,583,065 10-5-4-T 5,722 8,069,850
4-4-4-L 6,418 5,631,290 15-10-4-T 8,870 25,003,591
5-4-4-L 6,418 8,436,182 20-10-3-T 5,120 11,456,682
6-4-4-L 6,418 10,062,500 20-12-3-T 6,826 21,299,213
12-5-3-L 4,517 12,072,289 25-12-3-L 7,226 65,709,632
10-6-3-L 5,420 15,698,842 25-12-3-T 6,826 26,586,128
11-6-3-L 5,420 15,640,325 12-5-4-L 9,022 45,812,954
12-6-3-L 5,420 17,117,528 12-5-4-T 5,722 9,550,769
10-5-4-L 9,022 38,507,345 30-12-3-L 7,226 78,917,800
15-10-3-L 5,420 21,596,125 30-12-3-T 6,826 31,947,951
15-12-3-L 7,226 37,072,022 20-12-4-L 15,638 171,445,244
15-10-4-L 12,430 76,196,427 20-12-4-T 11,158 56,721,679
20-10-3-L 5,420 28,790,640 15-8-4-L 14,434 144,240,102
20-12-3-L 7,226 52,608,061 15-8-4-T 9,154 29,624,264
4-3-3-T 1,621 229,372 25-12-4-L 15,638 214,550,093
5-3-3-T 2,711 2,696,410 25-12-4-T 11,158 70,841,345
6-3-3-T 2,711 2,538,662 30-15-4-L 16,541 300,541,288
6-3-4-T 3,464 2,307,063 30-15-4-T 11,801 98,992,726
10-4-4-T 4,618 6,633,974 40-15-3-L 8,129 133,728,684
10-4-3-T 2,614 1,825,953 40-15-3-T 7,679 54,138,993

Cheong CY, Tan KC, Liu DK, Lin CJ, 2010 Multi-objective and prioritized berth allocation in con-

tainer ports. Annals of Operations Research 180(1):63–103, URL http://dx.doi.org/10.1007/

s10479-008-0493-0.

Cordeau JF, Laporte G, Legato P, Moccia L, 2005 Models and tabu search heuristics for the berth-allocation

problem. Transportation Science 39(4):526–538, URL http://dx.doi.org/10.1287/trsc.1050.0120.

Cormen T, Leiserson C, Rivest R, 1996 Introduction to algorithms (MIT Press,), ISBN 0070131430.

Corry P, Bierwirth C, 2019 The berth allocation problem with channel restrictions. Transportation Science

53(3):708–727, URL http://dx.doi.org/10.1287/trsc.2018.0865.

Dantzig G, Wolfe P, 1960 Decomposition principle for linear-programs. Operations Research 8(1):101–111,

URL http://dx.doi.org/10.1287/opre.8.1.101.

Du Y, Chen Q, Lam JSL, Xu Y, Cao JX, 2015 Modeling the impacts of tides and the virtual arrival policy

in berth allocation. Transportation Science 49(4):939–956, URL http://dx.doi.org/10.1287/trsc.

2014.0568.



Martin-Iradi, Pacino, and Ropke: The multi-port berth allocation problem with speed optimization
46 Article submitted to ; manuscript no.

Table 14 Results of solution methods with alternative branching strategies. The underlying algorithm is a

branch-and-cut-and-price where cutting is only allowed at the root node. ”*” means the time limit of 3 hours and

18 minutes has been reached.
Instance Best first on single graph node Strong branching on berthing time Best first on berthing position
N-B-P-TW LB Z Gap (%) T (s) LB Z Gap (%) T (s) LB Z Gap (%) T (s)
4-3-3-L 296,600 296,600 0.00 0.2 296,600 296,600 0.00 0.2 296,600 296,600 0.00 0.2
5-3-3-L 394,300 394,300 0.00 8.9 394,300 394,300 0.00 9.2 394,300 394,300 0.00 8.1
6-3-3-L 421,720 421,720 0.00 0.5 421,720 421,720 0.00 0.6 421,720 421,720 0.00 0.5
6-3-4-L 647,149 647,480 0.05 * 647,480 647,480 0.00 1,024.4 647,480 647,480 0.00 93.7
10-4-4-L 1,053,050 1,054,500 0.14 * 1,054,250 1,054,500 0.02 * 1,054,500 1,054,500 0.00 9,628.2
10-4-3-L 697,057 698,100 0.15 * 698,100 698,100 0.00 443.5 698,100 698,100 0.00 173.0
4-4-4-L 405,120 405,120 0.00 0.9 405,120 405,120 0.00 0.7 405,120 405,120 0.00 0.6
5-4-4-L 500,600 500,600 0.00 1.2 500,600 500,600 0.00 0.9 500,600 500,600 0.00 0.9
6-4-4-L 599,780 599,980 0.03 * 599,980 599,980 0.00 26.9 599,980 599,980 0.00 7.4
12-5-3-L 829,897 830,440 0.07 * 830,440 830,440 0.00 646.1 830,440 830,440 0.00 143.3
10-6-3-L 680,550 680,600 0.01 * 680,600 680,600 0.00 34.4 680,600 680,600 0.00 15.1
11-6-3-L 745,960 746,220 0.03 * 746,220 746,220 0.00 52.4 746,220 746,220 0.00 16.9
12-6-3-L 809,093 810,040 0.09 * 809,840 809,840 0.00 301.7 809,840 809,840 0.00 54.3
10-5-4-L 1,026,521 1,028,320 0.17 * 1,028,320 1,028,320 0.00 2,472.5 1,028,320 1,028,320 0.00 5,991.3
15-10-3-L 1,006,000 1,006,200 0.02 * 1,006,200 1,006,200 0.00 59.8 1,006,200 1,006,200 0.00 4.8
15-12-3-L 1,002,800 1,002,800 0.00 2.0 1,002,800 1,002,800 0.00 1.8 1,002,800 1,002,800 0.00 2.3
15-10-4-L 1,459,600 1,459,600 0.00 339.9 1,459,600 1,459,600 0.00 62.6 1,459,600 1,459,600 0.00 14.3
20-10-3-L 1,344,437 1,344,800 0.03 * 1,344,583 1,344,800 0.02 * 1,344,800 1,344,800 0.00 163.3
20-12-3-L 1,336,400 1,336,400 0.00 3.4 1,336,400 1,336,400 0.00 2.9 1,336,400 1,336,400 0.00 2.2
4-3-3-T 318,440 318,440 0.00 0.5 318,440 318,440 0.00 0.3 318,440 318,440 0.00 0.3
5-3-3-T 405,240 405,240 0.00 2.5 405,240 405,240 0.00 3.6 405,240 405,240 0.00 7.4
6-3-3-T 510,920 510,920 0.00 1.5 510,920 510,920 0.00 1.1 510,920 510,920 0.00 0.8
6-3-4-T 993,460 993,460 0.00 2.5 993,460 993,460 0.00 1.8 993,460 993,460 0.00 1.2
10-4-4-T 1,660,640 1,660,640 0.00 1,193.6 1,660,640 1,660,640 0.00 329.9 1,660,640 1,660,640 0.00 132.9
10-4-3-T 1,022,200 1,022,200 0.00 49.1 1,022,200 1,022,200 0.00 56.8 1,022,200 1,022,200 0.00 9.1
4-4-4-T 442,600 442,600 0.00 1.3 442,600 442,600 0.00 1.0 442,600 442,600 0.00 0.8
5-4-4-T 575,350 576,010 0.11 * 576,010 576,010 0.00 26.7 576,010 576,010 0.00 9.6
6-4-4-T 651,480 654,040 0.32 * 653,560 653,560 0.00 39.0 653,560 653,560 0.00 10.6
12-5-3-T 830,067 830,440 0.04 * 830,440 830,440 0.00 355.7 830,440 830,440 0.00 100.0
12-6-3-T 817,602 819,040 0.15 * 818,840 818,840 0.00 369.4 818,840 818,840 0.00 141.1
10-5-4-T 1,143,431 1,144,160 0.06 * 1,144,160 1,144,160 0.00 218.5 1,144,160 1,144,160 0.00 53.0
15-10-4-T 1,596,310 1,597,100 0.05 * 1,597,100 1,597,100 0.00 66.0 1,597,100 1,597,100 0.00 21.1
20-10-3-T 1,629,000 1,629,500 0.03 * 1,629,500 1,629,500 0.00 1,138.7 1,629,500 1,629,500 0.00 408.7
20-12-3-T 1,606,500 1,606,500 0.00 50.5 1,606,500 1,606,500 0.00 80.1 1,606,500 1,606,500 0.00 38.3
Average 0.0461 0.0012 0.0000
25-12-3-L 1,677,200 1,677,400 0.01 * 1,677,234 1,677,400 0.01 * 1,677,233 1,677,400 0.01 *
25-12-3-T 2,046,933 2,047,000 0.00 * 2,046,933 2,047,000 0.00 * 2,046,933 2,047,000 0.00 *
12-5-4-L 1,240,248 1,245,160 0.39 * 1,243,262 1,245,160 0.15 * 1,243,019 1,245,160 0.17 *
12-5-4-T 1,398,454 1,404,640 0.41 * 1,402,329 1,404,520 0.14 * 1,403,550 1,405,580 0.05 *
30-12-3-L 2,016,178 2,016,600 0.02 * 2,016,178 2,016,600 0.02 * 2,016,245 2,016,600 0.02 *
30-12-3-T 2,491,406 2,492,500 0.04 * 2,491,490 2,492,600 0.04 * 2,491,437 2,492,600 0.04 *
20-12-4-L 1,943,545 1,943,800 0.01 * 1,943,800 1,943,800 0.00 778.0 1,943,800 1,943,800 0.00 635.2
20-12-4-T 3,113,085 3,113,170 0.00 * 3,113,170 3,113,170 0.00 75.1 3,113,170 3,113,170 0.00 40.8
15-8-4-L 1,495,243 1,497,100 0.12 * 1,497,000 1,497,000 0.00 3,228.6 1,497,000 1,497,000 0.00 4,309.9
15-8-4-T 1,655,075 1,656,040 0.06 * 1,656,040 1,656,040 0.00 4,356.3 1,656,040 1,656,040 0.00 792.3
25-12-4-L 2,439,300 2,440,500 0.05 * 2,439,810 2,440,500 0.03 * 2,439,585 2,440,800 0.04 *
25-12-4-T 3,705,997 3,707,790 0.04 * 3,707,390 3,707,390 0.00 578.0 3,707,390 3,707,390 0.00 6,483.4
30-15-4-L 2,918,409 2,918,800 0.01 * 2,918,510 2,918,600 0.00 * 2,918,464 2,918,800 0.00 *
30-15-4-T 3,274,228 3,278,860 0.12 * 3,275,538 3,278,480 0.08 * 3,275,004 3,278,280 0.10 *
40-15-3-L 2,689,060 2,689,200 0.01 * 2,689,060 2,689,200 0.01 * 2,689,060 2,689,200 0.01 *
40-15-3-T 3,329,567 3,330,500 0.02 * 3,329,567 3,330,500 0.02 * 3,329,567 3,330,300 0.02 *
Average 0.0824 0.0314 0.0288
Optimal solutions 16/50 37/50 39/50
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