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1. Introduction31

Efficient public transportation planning is crucial for urban mobility, and railway systems are32

one of its core modes of transport. As depicted in Fig. F1, railway planning consists of strate-33

gic, tactical, and operational phases (Bussieck et al. 1997, Lusby et al. 2018). At the strategic34

level, network and line planning define the overall service structure, determining routes, stops,35

and long-term infrastructure development. Tactical planning involves timetable design, vehicle36

assignment, and workforce allocation, whereas operational planning focuses on real-time traffic37

management to mitigate disruptions and maintain service reliability. Vehicle circulation repre-38

sents an intermediate planning stage between timetabling and detailed vehicle scheduling, where39

the focus is on determining the total number of vehicles needed rather than assigning specific40

rolling stock to individual trips.
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Figure F1: Illustration of railway planning stages, positioning vehicle circulation as an interme-
diate step between timetabling and vehicle scheduling.

41

Although planning these phases is traditionally handled sequentially, their interdependence42

suggests potential benefits from integrated optimization (Schiewe 2020). Joint optimization of43

timetabling and vehicle scheduling can reduce fleet requirements and improve resource utiliza-44

tion, highlighting the need for models that incorporate multiple planning aspects simultaneously.45

However, solving these integrated problems using traditional Mixed Integer Program (MIP) meth-46

ods remains challenging due to computational complexity and achieving optimal solutions for47

large instances.48

Recent studies (Borndörfer et al. 2020, Matos et al. 2020, Gattermann et al. 2016) have49

shown that solution methods based on the Boolean Satisfiability Problem (SAT) can outperform50

MIP solvers on planning problems such as the Train Timetabling Problem (TTP). Despite its51

2



advantages, SAT methods rely on the discretisation of time, which increases the size of the prob-52

lem encoding as the time resolution becomes finer, posing scalability challenges. Satisfiability53

Modulo Theories (SMT) emerges as a promising alternative to address the scalability limitations.54

SMT extend SAT solvers by incorporating difference constraints, enabling the handling of contin-55

uous time without discretisation. This alternative allows for more scalable and precise solutions56

compared to traditional SAT-based methods.57

This paper addresses all these limitations by, on one side, integrating timetabling, train rout-58

ing, and vehicle circulation into a unified framework referred to as the Periodic Event Scheduling59

Problem with Vehicle Circulation and Routing (VCR-PESP). This breaks the sequential struc-60

ture and focuses on minimizing the number of vehicles needed to operate a cyclic timetable.61

Conversely, we implement an SMT-based approach for solving the integrated problem at a large62

scale.63

Key contributions of this research include:64

• Integrated problem formulation: We introduce the VCR-PESP, a unified model inte-65

grating periodic timetabling, infrastructure-aware routing, and vehicle circulation within66

a single optimization framework.67

• Scalable solution approach: We develop a novel SMT-based model that supports con-68

tinuous time and avoids discretisation. Compared to traditional SAT and MIP methods, it69

achieves improved scalability and runtime performance.70

• Real-world computational study: We apply our method to real-world data from the71

Swiss narrow-gauge operator RhB, demonstrating substantial fleet size reductions and effi-72

cient solver performance across different network and time resolutions.73

• Systematic evaluation of integration effects: We quantify the impact of discreti-74

sation, routing flexibility, and vehicle sharing on vehicle requirements, illustrating the75

operational benefits of fully integrated planning approaches.76

Our paper highlights the importance of integrating vehicle circulation into timetabling. It77

emphasizes the computational benefits of SMT, offering a framework for addressing the challenges78

of large-scale public transportation planning.79

The paper is organised as follows: Section 2 provides a literature review covering timetabling,80

vehicle circulation, and train routing. Section 3 details the methodology, focusing on integrating81

these components using SMT. Section 4 presents and places the computational results in context.82

Finally, Section 5 summarises the findings and outlines directions for future research.83
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2. Literature Review84

This section reviews the stages of railway system planning, focusing on integrating periodic85

timetabling and vehicle circulation. We discuss recent advancements in optimization techniques86

and identify challenges that this paper seeks to address.87

2.1 Periodic Timetabling and Extensions, Including Routing88

As mentioned in Section 1, railway planning is divided into stages, with different stages handled89

sequentially due to their complex nature. In particular, the TTP in the timetabling stage is a90

key planning problem, as it defines the arrival and departure times of all services and ensures91

that these do not conflict given the existing infrastructure and operational requirements.92

A common approach for finding timetables for passenger trains in a network is to define a93

periodic timetable that repeats over a certain period. The Periodic Event Scheduling Problem94

(PESP), introduced by Serafini and Ukovich (1989), is the foundation of periodic timetabling.95

It ensures that train schedules repeat in cycles while satisfying operational constraints. The TTP96

framework has been widely applied in railway planning, balancing passenger demand, infras-97

tructure capacity, and operational feasibility (Peeters 2003). While PESP provides a structured98

optimization model, its reliance on modular constraints imposes limitations when incorporating99

additional degrees of freedom, such as train routing and infrastructure constraints.100

Several extensions have sought to enhance PESP by improving timetable flexibility. Studies101

by Gattermann et al. (2016) and Robenek et al. (2016a) introduce passenger route adjustments,102

while Liebchen (2004) investigate timetable symmetry constraints. More recent work has fo-103

cused on integrating track choice into periodic timetabling. Wüst et al. (2019) extend PESP to104

incorporate flexible train routing decisions, allowing trains to adapt to different infrastructure105

configurations. Similarly, Masing et al. (2023) explore routing adaptability in railway construc-106

tion settings.107

(Bortoletto et al. 2023) introduce the Infrastructure-aware PESP, where the model is formu-108

lated using explicit track-based constraints, and the Flexible Infrastructure Assignment PESP109

(Bortoletto et al. 2024), generalizing infrastructure allocation across multiple configurations.110

Periodic timetabling can also be modeled using alternative models to the PESP. Constraint-111

based formulations like the one presented in Heydar et al. (2013) incorporate multiple train112

types and explicitly minimize cycle time instead of relying on periodic constraints. Robenek113

et al. (2016b) consider a model between cyclic and acyclic timetabling and display the interest114

of keeping regularity for a fixed set of lines instead of all lines to solve the problem on a network115

level. The model is solved using a simulated annealing method and verified on the Israeli railway116

network. Martin-Iradi and Ropke (2022) use a time-space graph to formulate a macroscopic TTP117
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with train routing and solve it using a column-generation-based matheuristic.118

2.2 Integration of Vehicle Circulation into Timetabling119

Vehicle circulation is critical in railway operations (Borndörfer et al. 2018), as it determines120

how rolling stock is allocated across scheduled services. Traditional approaches treat vehicle121

circulation as a separate problem, first establishing a timetable and then assigning vehicles, often122

resulting in inefficient fleet usage (Goossens et al. 2006). More recent research has demonstrated123

that integrating vehicle circulation into TTP can lead to reductions in fleet size while maintaining124

timetable feasibility (Lieshout 2021). Optimization models can minimize turnaround times and125

dead-heading by considering rolling stock constraints at the timetabling stage, improving overall126

vehicle utilisation.127

Examples beyond railway include integrated models for bus operations that optimize fleet128

costs or passenger transfers, such as Ibarra-Rojas et al. (2014), Fonseca et al. (2018), and129

Schmid and Ehmke (2015). While these approaches explore valuable trade-offs between vehicle130

usage, robustness, and transfers, they typically assume fixed routing or ignore infrastructure131

constraints, making them less applicable to railway models.132

MIP formulations are widely used for periodic timetabling and vehicle circulation problems133

due to their flexibility in constraint modeling (Goerigk and Liebchen 2017, Herrigel et al. 2018).134

However, due to their inherent complexity, MIP models become computationally intractable for135

large-scale instances.136

Even without additional constraints such as routing or rolling stock optimization, PESP137

is known to be NP-hard (Peeters 2003). This computational intractability has motivated the138

development of new solution techniques, relying on Boolean Satisfiability Problem (SAT).139

2.3 SAT-based Methods in Transport Planning140

Recent studies have shown that solving the TTP without VCP using Boolean Satisfiability Problem141

(SAT)-based solvers outperforms commercial ones for MIPs, especially when the objective is to142

find feasible solutions (Großmann et al. 2012, Großmann 2016, Kümmling et al. 2015, Fuchs143

et al. 2022). Borndörfer et al. (2020) propose a concurrent solver for the TTP that integrates144

SAT, MIP, and domain-specific heuristics, demonstrating the benefit of combining logical and145

mathematical programming approaches for solving PESP instances.146

SAT-based methods encode scheduling constraints as logical formulas and leverage efficient147

SAT solvers to determine feasible solutions. However, SAT formulations rely on time discretisa-148

tion, which increases encoding size and computational effort as resolution granularity improves149

(Großmann 2011). While this can be mitigated through coarse time steps, such approximations150

may lead to suboptimal or infeasible solutions in high-resolution timetables.151
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Previous extensions of SAT include the work by Gattermann et al. (2016), who augment SAT-152

based timetabling by including passenger routing preferences in the form of soft constraints,153

resulting in a MaxSAT formulation. Matos et al. (2020) further enhance this approach by154

introducing reinforcement learning to guide the search in MaxSAT, improving performance on155

public benchmark instances. While these methods demonstrate the adaptability of logic-based156

frameworks to include user-centric objectives, they do not yet support integration with routing157

and vehicle constraints, which introduces additional modeling and computational challenges.158

These developments illustrate a shift from classical SAT solving toward hybrid and learning-159

based strategies, highlighting the potential of logic-oriented approaches to model passenger-160

centric objectives. However, such approaches have not yet been extended to integrate routing161

or vehicle constraints, which introduces additional structural complexity.162

2.4 Research Gap163

While prior research has addressed periodic timetabling extensions, routing flexibility, and ve-164

hicle circulation separately, their joint optimization remains an open challenge. Most existing165

models treat routing independently of rolling stock constraints or optimize vehicle circulation,166

assuming fixed train paths (Caimi et al. 2017).167

Moreover, although MIP and SAT-based methods have successfully solved isolated components168

of the problem, they struggle with scalability when considering large-scale instances with high-169

resolution schedules. In particular, SAT-based models require time discretisation, which increases170

encoding size and computational complexity as resolution improves (Großmann 2011). While171

coarse time steps can reduce problem size, they may lead to suboptimal or infeasible solutions.172

This paper formulates an integrated optimization model that addresses these challenges. The173

model jointly considers TTP, routing flexibility, and vehicle circulation at a mesoscopic resolu-174

tion—offering more detail than macroscopic models while remaining computationally tractable.175

We leverage Satisfiability Modulo Theories (SMT) as a scalable solution framework. SMT extends176

SAT by incorporating difference-logic constraints, allowing continuous-time formulations with-177

out discretisation (Armando et al. 2004, Leutwiler and Corman 2022). This extension enables178

efficient solving of integrated problems while maintaining high temporal precision.179

3. Methodology180

This section presents the methodology for modeling and optimizing train routes, event timings,181

train sequencing, and vehicle transitions within a periodic timetable. We introduce the Event182

Activity Network (EAN), the foundational structure for modeling events, activities, and interde-183

pendencies. The EAN provides a structured representation of the timetabling problem, linking184

routing and scheduling decisions.185
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Building on the EAN, we describe three distinct approaches to solving the problem: a MIP186

formulation, an SMT encoding, and a SAT-based version. Each approach builds on the EAN187

with selectable activities, enabling us to solve and compare the three.188

3.1 Introducing the Event Activity Network (EAN)189

The EAN is a standard data structure to model periodic timetabling problems. It consists of190

a set of nodes E representing events (e.g., train arrivals or departures) and a set of edges A191

representing activities that capture constraints between these events (Liebchen and Möhring192

2004). While activities are traditionally binding and consistently enforced, enabling routing193

flexibility or optional passenger and vehicle transfers requires defining some activities as se-194

lectable—their constraints apply only if specific conditions are met. This concept supports195

modeling infrastructure-dependent routing (Fuchs et al. 2022) and conditional transfers (Kroon196

et al. 2014), and is essential for integrated optimization across planning stages.197

Event
Activity

Figure F2: Example EAN with six events and six activities.

The EAN aims to assign a timestamp te P r0, T q to each event e P E , where T is the period of198

the timetable. For each activity a P A, there is a duration δa bounded by a lower limit δmin
a and199

an upper limit δmax
a , such that δmin

a ď δa ď δmax
a . The duration δa is derived from the scheduled200

times of the two connected events. If i and j denote the origin and destination events of activity201

a “ pi, jq, then the duration is calculated as:202

δa “ tj ´ ti ` ka ¨ T, @a “ pi, jq P A (1)

where ka P Z adjusts for cases where ti ą tj due to train schedules being longer than the cycle203

period.204

The EAN includes three types of events: arrival, where trains arrive at a stopping stop,205

departure, where trains depart from a stopping stop, and passing, where a train traverses a206

given location. It also supports six distinct activity types:207

1. Trip activities for train movements between stations,208

2. Dwell activities for stopping at stations,209

3. Headway activities to ensure safe and feasible separation of trains using shared infrastruc-210

ture,211
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4. Regularity activities to enforce even spacing for high-frequency services,212

5. Commercial activities to meet service requirements such as maximum time between com-213

mercial stops,214

6. Vehicle-transfer activities to model vehicle handovers between terminating and originating215

trains at termini (Kroon et al. 2014, Lieshout 2021).216

These activities are explained in detail in the remainder of this section.217

3.2 Including Train Routing218

To optimize train routes, we extend the EAN to include multiple routing options per train219

service, following the approach of Fuchs et al. (2022). Routes consist of dwell and trip activities,220

which are modeled within the EAN. An example of itinerary activities for a single train is221

depicted in Fig. F3.222

BA

Figure F3: Commercial and itinerary constraints for an example train visiting two stops, A and
B, modeled as activities in the EAN.

To construct this extended EAN, we begin with a line plan specifying the stations each train223

serves. Each train’s infrastructure and routing options are derived from this station sequence,224

allowing the EAN to represent the train’s feasible movements through the network. The resulting225

network includes one weakly connected component for each train, which consists of only dwell226

and trip activities. These are organized into a Train Flow Network (TFN), a graph with node227

set V and arc set W representing itinerary options. An example TFN is shown in Fig. F4.228

BA

Figure F4: A TFN example for a train service with five possible paths.

The sets VSource and VSink denote artificial source and sink nodes for the set of train services229

to schedule, and are a subset of V. The TFN (as well as the EAN) is a directed and acyclic230

graph, meaning that a path from source to sink will define a valid route for a train service. To231

compute the chosen route, we define binary variables xv P t0, 1u to indicate whether a node232
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v P V is visited, and xw P t0, 1u to indicate whether an arc w P W is selected. As the TFN233

is a reduced version of the EAN, each event e P E and activity a P A can be mapped to the234

related nodes and links in the TFN. Once the train routes are selected, the EAN is completed235

by incorporating all remaining activities, such as headway and vehicle-transfer activities. This236

completion ensures that the final model respects operational and commercial constraints while237

preventing conflicts.238

3.3 Adding Vehicle Circulation239

Optimized vehicle circulation ensures the efficient use of rolling stock. To model vehicle move-240

ments effectively, we extend the EAN to include vehicle circulation links at termini. These241

links represent the transfer of vehicles between train services at their origin and destination242

stations. By modeling these links as activities within the EAN, we can seamlessly apply the243

same framework for routing trains to vehicle circulation.244
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(b) Vehicles shared across lines.

Figure F5: Illustration of vehicle circulation strategies using two lines (i.e., red and blue): per-
line circulation (a) and shared vehicle circulation (b).

Figure F5 illustrates the two primary vehicle circulation strategies. In the per-line strategy245

(Fig. F5a), vehicles are restricted to operating within the same line, effectively isolating vehicle246

pools for each train line. In the shared circulation strategy (Fig. F5b), vehicles can transfer freely247

between lines, enabling a more flexible allocation of rolling stock. The choice of strategy may248

have significant implications for vehicle requirements and operational flexibility, as suggested by249

the example in Fig. F5 and demonstrated in our experimental results.250

For each terminating train service, the model considers all possible links that transfer vehicles251

to originating train services. These links are represented as binary variables xu P t0, 1u, where252

u P U denotes a vehicle circulation link. To ensure a feasible matching between train arrivals253
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and departures, we impose the following constraints:254

ÿ

uPUOut
e

xu “ 1, @e P EStart, (2)

ÿ

uPU In
e

xu “ 1, @e P EEnd, (3)

where the events of all originating and terminating train services are denoted by the sets EStart
255

and EEnd, respectively, UOut
e is the set of outgoing circulation links associated with event e, and256

U In
e is the set of incoming circulation links. These constraints ensure that each arrival event at257

a terminus matches precisely one departure event, forming a valid vehicle transfer. Due to the258

cyclic characteristic of the timetable, we do not need to account for the start and end of vehicle259

operations.260

3.4 Defining Selectable Activities261

We follow the concept of selectable and non-selectable activities introduced by Fuchs et al.262

(2022), and we extend this approach by treating all activities a P A as selectable. A selectable263

activity is one whose time constraints δa P rδ
min
a , δmax

a s are enforced only if associated routing264

or circulation decisions activate the activity. Otherwise, the activity remains inactive and its265

duration unconstrained (i.e., ta P R). As mentioned in Section 3.2, each activity a P A has266

associated elements in the TFN, which group together a set of itinerary nodes v P Va Ď V, links267

w PWa ĎW, or vehicle transfers u P Ua Ď U , and the activation of the activity depends on the268

utilization of such elements.269

To formalize this relationship, for each activity a P A, we define its relevant components Ωa270

as the union of the sets Va, Wa, and Ua:271

Ωa “ Va YWa Y Ua. (4)

The sets Va, Wa, and Ua are activity-specific. For example:272

• A trip activity depends solely on the corresponding infrastructure link w PW, with |Ua| “273

0, |Va| “ 0, and |Wa| “ 1.274

• A headway activity depends on two infrastructure nodes v P V traversed by the trains,275

with |Ua| “ 0, |Va| “ 2, and |Wa| “ 0.276

• A vehicle-transfer activity depends on a single vehicle transfer, with |Ua| “ 1, |Va| “ 0,277

and |Wa| “ 0.278

The duration δa of an activity a P A, is by default constrained by the time bounds δmin
a and279
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δmax
a if all associated components ω P Ωa are active. If at least one component is not selected280

(xω “ 0), these bounds are relaxed using large constants Bmin
a and Bmax

a :281

δa ě δmin
a ´ p|Ωa| ´

ÿ

ωPΩa

xωq ¨B
min
a , @a P A, (5)

δa ď δmax
a ` p|Ωa| ´

ÿ

ωPΩa

xωq ¨B
max
a , @a P A. (6)

These equations ensure that the bounds on δa are only enforced when the activity is active,282

while inactive activities are effectively unconstrained.283

This unified treatment of selectable activities eliminates the need to explicitly distinguish284

between selectable and non-selectable activities, as all activities are inherently treated as se-285

lectable. For example, independent of routing decisions, commercial activities are modeled with286

|Ωa| “ 0. Consequently, their time bounds must always be respected. For notation simplicity,287

we unify the definition of our selection variable xω for each element ω P Ωa and activity a P A.288

By linking the activation of activities to the TFN, we effectively reduce redundancy in the289

model. For instance, headway activities are automatically deactivated if only one train uses290

the relevant infrastructure, and redundant vehicle-transfer options are excluded based on the291

chosen routes. This approach prevents over-constraining the problem, ensuring feasibility while292

maintaining flexibility for optimization.293

3.5 MIP Formulation294

As a final step before formulating the MIP, we define the objective function, which minimizes295

the number of vehicles required to operate a periodic timetable. In the VCR-PESP, each train296

service must be part of a feasible vehicle sequence that loops back periodically, forming a closed297

path along a cycle in the EAN. These vehicle cycles consist of alternating commercial activities298

(i.e., scheduled train trips) and vehicle-transfer activities (i.e., transitions at terminus stations).299

Let S Ă A be the set of commercial activities and U Ă A the set of selected vehicle-transfer300

activities. When a valid timetable is constructed, each vehicle must follow a path through a301

sequence of activities in S Y U that forms a cycle of total duration equal to an integer multiple302

of the period T . This property reflects the cyclic nature of the timetable, where vehicles repeat303

the same circulation pattern every period.304

An illustrative example is shown in Fig. F6, highlighting two such vehicle cycles. Each cycle305

consists of alternating activities with duration δa “ tj ´ ti ` kaT . Because each event appears306

exactly once as a predecessor and once as a successor in the cycle, all tj ´ ti terms cancel when307

summing over the cycle. The total duration of the cycle reduces to
ř

aPcycle ka ¨ T , and the308

number of vehicles needed to operate the cycle is thus equal to
ř

aPcycle ka.309
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Figure F6: Example illustration of two cycles in which vehicles circulate. Each cycle has a total
length of T . Since there are two such cycles, the total vehicle requirement is 2.

Consequently, the total number of vehicles required across all cycles in the solution is given by:310

ÿ

aPSYU
ka

This sum reflects the objective function of the VCR-PESP model and is minimized to obtain311

the most efficient vehicle circulation.312

Table T1: Consolidated Variable and Set Definitions for VCR-PESP

Symbol Type Definition

V Set Set of itinerary nodes in the TFN.

VSource, VSink Set Set of artificial source and sink nodes for train services in the TFN.
W Set Set of itinerary links in the TFN
U Set Set of vehicle circulation links.

U In
e ,UOut

e , Set Set of outgoing (resp. incoming) circulation links associated with event e P EEnd (resp. e P EStart).
S Set Set of commercial activities of train services.
E Set Set of events (i.e., arrival, departure, passing) in the EAN.

EStart, EEnd Set Set of originating and terminating train service events.
A Set Set of activities (e.g., trip, dwell, headway, regularity, commercial, vehicle-transfer) in the EAN.
Va, Wa,Ua Set Sets of itinerary nodes and links, and vehicle circulation links associated with activity a P A.
Ωa Set Union of sets Va,Wa,Ua for activity a P A.
α`

pvq, α´
pvq Set Set of outgoing (resp. incoming) nodes from (resp. to) v P V directly connected by a link in W.

T Parameter Period duration.
δmin
a Parameter Lower bound for duration of activity a P A.
δmax
a Parameter Upper bound for duration of activity a P A.
Bmin

a , Bmax
a Parameter Bounds for relaxed duration of non-selected activity a P A.

xω Variable Binary variable for selection of element ω P Ωa of activity a P A.
te Variable Timestamp of event e P E
δa Variable Duration of activity a P A
ka Variable Period adjustment for activity a P A

We present in (7) the formulation of the VCR-PESP. The notation is summarized in Table T1313

min
ÿ

aPSYU
ka (7a)
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subject to: δa ě δmin
a ´ p|Va| ´

ÿ

vPVa

xv ` |Wa| ´
ÿ

wPWa

xwq ¨B
min
a , @a P A, (7b)

δa ď δmax
a ` p|Va| ´

ÿ

vPVa

xv ` |Wa| ´
ÿ

wPWa

xwq ¨B
max
a @a P A, (7c)

δa “ ptj ´ tiq ` ka ¨ T, @a “ pi, jq P A, (7d)
ÿ

wPα`pvq

xw “
ÿ

wPα´pvq

xw “ xv, @v P V, (7e)

ÿ

wPα`pvq

xw “ 1, @v P VSource (7f)

ÿ

uPUOut
e

xu “ 1, @e P EStart, (7g)

ÿ

uPU In
e

xu “ 1, @e P EEnd, (7h)

variables: te P r0, T q, @e P E , (7i)

δa ě 0, @a P A, (7j)

xω P t0, 1u, @ω P Ωa,@a P A, (7k)

ka P Z, @a P A (7l)

The objective function in (7a) minimizes the vehicle count, as suggested by Lieshout (2021).314

Constraints (7b) and (7c) ensure both the correct activation of elements and the duration window315

of activities. The PESP constraint, given in (7d), establishes a direct relationship between the316

duration of an activity and the timing of its associated events. Constraint (7e) guarantees flow317

conservation in the TFN, and together with Constraint (7f), it enforces that exactly one route is318

chosen for each train service, thus requiring a unique path for each train within the timetable.319

Vehicle circulation is managed through constraints (7g) and (7h). These ensure that for each320

event that marks the start or end of a train’s journey, precisely one vehicle circulation activity is321

chosen, as proposed by Lieshout (2021). The nature of the decision variables used in the model322

is defined in (7i), (7j), (7k), and (7l).323

3.6 Transformation to SMT324

The VCR-PESP can quickly become intractable for state-of-the-art commercial solvers. To325

solve (7), we present an alternative approach using Satisfiability Modulo Theories (SMT), which326

integrates Boolean Satisfiability Problem (SAT) with difference constraints. This approach allows327

us to encode the model formulation (7) into a combination of Boolean formulas and arithmetic328

constraints. Specifically, the Boolean formula is expressed in its Conjunctive Normal Form (CNF)329

and consists of Boolean variables q P Q, which form clauses composed of literals. Each clause is330

a disjunction of literals, where each literal represents either a variable or its negation, ensuring331
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that at least one of the included variables is assigned the required value for the clause to hold.332

All clauses in the CNF must be satisfied in a valid assignment to the variables. This structure333

allows efficient constraint propagation and satisfiability checking (Biere et al. 2009).334

The arithmetic component of the SMT formulation consists of difference constraints, which335

enforce relationships between integer variables. For a given activity a “ pi, jq these constraints336

take the following form:337

ti ´ tj ě δa _␣q, (8)

Where ti and tj are event times, δa is a minimum required separation, and q is a Boolean338

variable controlling whether the constraint must hold. This encoding allows conditional con-339

straints, meaning that if q is set to False, the constraint is effectively deactivated. In contrast,340

the Boolean term _␣q is omitted for mandatory constraints that must always be respected. For341

further background on the extension of SAT with difference constraints, we refer the reader to342

Armando et al. (2004).343

Since the SMT encoding requires that all variables involved in Boolean operations are binary,344

we preprocess the input EAN to ensure that all activity durations δa fall within the range r0, T s,345

thus converting all periodicity variables ka into binary representations. To achieve compliance346

with this condition, we employ the method proposed by Peeters (2003). This transformation347

splits any activity with a non-binary ka into two or more activities, ensuring that each resulting348

activity can be represented with a binary ka.349

3.6.1 Boolean Encoding of the Train Flow Network (TFN)350

Next, we describe how to encode the problem in SMT. Initially, we define some helper functions351

before delving into encoding the MIP as outlined in Eq. (7).352

encode-at-most-onepQq :“
ľ

@qi,qjPQ, iăj

p␣qi _␣qjq (9a)

encode-at-least-onepQq :“
ł

qPQ
q (9b)

encode-exactly-onepQq :“ encode-at-least-onepQq

^ encode-at-most-onepQq
(9c)

The encode-at-most-one function (Eq. (9a)) ensures that no more than one variable in a353

set is assigned the value True. Conversely, encode-at-least-one (Eq. (9b)) ensures at least one354

variable in a set is assigned the value True. Combining these two functions, encode-exactly-one355
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(Eq. (9c)) guarantees that exactly one variable in a set is assigned the value True.356

Next, we focus on encoding the TFN and vehicle circulation cardinality constraints. This357

encoding step involves defining a SAT variable q P Q for each v P V node, w PW link, and u P U358

vehicle circulation link in the TFN.359

encode-TFN pVq :“
ľ

@vPV
p␣qv

ł

yPα`pvq

pqy ^␣qvq
ł

yPα´pvq

qy

^ encode-at-most-onepQpα`pvqqq

^ encode-at-most-onepQpα´pvqqqq (10a)

encode-one-train-path :“
ľ

@cPC
encode-exactly-onepqv : v P Vcq (10b)

To encode the network, we can use the same approach as given by Fuchs et al. (2022), which360

encodes flow balance in Eq. (10a) and then requires one path per train in Eq. (10b).361

3.6.2 Encoding of the Event Activity Network (EAN)362

Having encoded the TFN, we now turn our attention to encoding the EAN for the SMT equivalent363

of model (7). We begin by defining SAT variables Q and time variables. Each event e P E is364

associated with a positive time variable te.365

encode-eventpEq :“
ľ

@ePE
pte ´ t0 ě 0q ^ pt0 ´ te ě ´T q (11a)

Each activity a “ pi, jq P A links two events and has an associated period offset ka P t0, 1u,366

due to the preprocessing step described in the MIP formulation in Section 3.5. This binary nature367

allows us to represent each activity using exactly two precedence directions: either tj ě ti,368

corresponding to ka “ 0, or tj ă ti, which implies ka “ 1. To encode this behavior, we introduce369

two Boolean variables for each activity: qa to represent the case where tj ě ti, and q̂a to370

describe the inverted precedence ti ą tj . These two cases are mutually exclusive and collectively371

exhaustive, ensuring that precisely one is active when the activity is selected. The corresponding372

difference constraints are then conditionally enforced using the variables qa and q̂a, as shown373

in Eqs. (12a) and (12b). Finally, Eq. (12c) ensures that precisely one of the two precedence374

directions is activated whenever the activity is selected (i.e., when all elements in Ωa are active).375
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encode-minimal-deltapAq :“
ľ

@aPA
pptj ´ ti ě δmin

a q _ ␣qaq ^ ppti ´ tj ď pT ´ δmin
a qq _ ␣q̂aq

(12a)

encode-maximal-deltapAq :“
ľ

@aPA
ppti ´ tj ě ´δ

max
a q _ ␣qaq ^ pptj ´ ti ď ´pT ´ δmax

a qq _ ␣q̂aq

(12b)

activate-precedencepAq :“
ľ

@aPA
ppqa _ q̂aq _

ľ

ωPΩa

␣qωq (12c)

3.6.3 Encoding the Vehicle Circulation376

After encoding the TFN and EAN, we need to encode the vehicle circulation before focusing on377

transforming the encoded satisfiability problem into a minimization task. Therefore, we enforce378

that each start event e P EStart and each end event e P EEnd is connected by exactly one transfer379

arc:380

encode-vehicle-circulation-startpEStartq :“
ľ

@ePEStart

encode-exactly-onepQpα`peqqq

(13a)

encode-vehicle-circulation-endpEEndq :“
ľ

@ePEEnd

encode-exactly-onepQpα´peqqq (13b)

These Eqs. (13a) and (13b) ensure the correct transfers of vehicles by enforcing flow conser-381

vation and exclusivity at transfer events, thereby guaranteeing that each scheduled train service382

is connected to a feasible vehicle cycle, consistent with the operational rules defined in the SMT383

model.384

encode-vehicle-countpn,S Y Uq :“ sequence-counterpn, P̂ q where P̂ “ tp̂a | a P S Y Uu

(14)

As outlined in Section 3.5, the number of vehicles required to operate a feasible periodic385

timetable corresponds to the sum over all ka P t0, 1u for selected commercial and vehicle-transfer386

activities a P S Y U . In the SMT formulation, each binary variable p̂a encodes whether the387

corresponding precedence is inverted, i.e., whether ka “ 1. Consequently, Eq. (14) applies the388

sequence-counter encoding (Sinz 2005) to the set of literals p̂a, thereby enforcing an upper389

bound n on the number of vehicles. This reformulates the vehicle circulation problem as a390
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feasibility check under a fixed fleet size constraint.391

3.7 Translation to SAT392

To enable a direct comparison with the SMT and MIP models, we formulate a SAT encoding of393

the periodic timetabling problem. This encoding follows the approach of Fuchs et al. (2022),394

which extends the method of Großmann (2011) to handle train routing, and we further adapt395

it to incorporate vehicle circulation constraints.396

For brevity, we do not explicitly detail the encoding of train sequencing, headway constraints,397

or vehicle circulation, as these follow the structure already established in Fuchs et al. (2022).398

Instead, we outline the key aspects distinguishing the SAT model from SMT and MIP.399

The transformation consists of two primary steps. First, all event times are encoded using400

an order encoding, representing integer time values as Boolean variables. Second, all difference401

constraints—previously formulated in SMT—are expressed in propositional logic. The resulting402

model ensures consistency across train movements while maintaining routing flexibility.403

Vehicle circulation constraints are incorporated analogously to the SMT model by enforcing404

exactly-one constraints for train handovers at terminal stations: each terminating train se-405

lects precisely one outgoing vehicle-transfer activity, and each originating train selects exactly406

one incoming activity. To encode the vehicle count, we introduce indicator literals p̂a for each407

vehicle-related activity a P SYU , representing whether the activity uses the cyclic wrap-around408

(i.e., ka “ 1). These literals are used in conjunction with a sequence-counter encoding (Sinz409

2005) to enforce an upper bound n on the number of wrap-arounds—and hence vehicles. This410

reformulates the vehicle circulation problem as a feasibility check under a fixed fleet size con-411

straint, consistent with the SMT model.412

4. Results413

The results presented in this section are based on three sets of experiments designed to evaluate414

the efficiency of the proposed modeling approaches and assess the impact of various problem415

characteristics. First, we describe the implementation of the models (Section 4.1), and present416

the case-study and the set of instances derived from the Swiss railway network (Section 4.2), and417

compare the computational performance of Mixed Integer Programming (MIP), Boolean Satis-418

fiability (SAT), and Satisfiability Modulo Theories (SMT) solvers varying the time discretisation419

granularity (Section 4.3). Second, we investigate how discretisation affects vehicle requirements420

under two circulation strategies: vehicles restricted to the same line versus shared use across all421

trains (Section 4.4). Third, we analyze the effect of train routing flexibility on vehicle counts,422

comparing fixed and flexible routing scenarios with the same two circulation strategies (Sec-423

tion 4.5). Finally, we study the benefit of the proposed integrated problem against sequential424
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equivalent planning procedures (Section 4.6).425

4.1 Implementation426

The proposed models are implemented using the OpenBus framework (Fuchs and Corman 2019),427

ensuring consistency across all solving methodologies. We consider three optimization ap-428

proaches: MIP, SAT, and SMT, each using a computing server equipped with four CPU cores429

(Intel Xeon Gold 6248) and 32 GB of RAM for all computational experiments. To leverage430

parallelization, all solvers utilize four threads.431

The MIP formulation is implemented using Gurobi 12.0.1 (Gurobi Optimization, LLC 2025),432

with four solver threads assigned. The SAT formulation is implemented using Glucose 4.1 (Au-433

demard and Simon 2018) via the PySAT package (Ignatiev et al. 2018). A portfolio strategy434

utilizes all four cores, where each core runs an independent solver instance initialized with a435

different random seed (Balyo et al. 2015). The SMT solver extends the approach of Leutwiler and436

Corman (2022), employing a portfolio-based strategy similar to the SAT approach. The solvers437

do not share any state or information, as they work on independent search spaces, with the first438

to terminate providing the final result.439

We solve the SAT and SMT problems using an ascending linear search to determine the minimal440

vehicle count. First, a lower bound on the number of required vehicles is computed based on441

relaxed circulation constraints, neglecting headway constraints. This relaxation provides an442

initial lower bound for subsequent iterations. The model is then solved incrementally, starting443

from this bound and increasing the vehicle count n step by step. If the model is infeasible444

for a given n, the vehicle count is incremented by one, and the lower bound is updated until445

feasibility is attained. Once a feasible solution is found, it is guaranteed optimal, as during this446

linear search, all instances with fewer vehicle counts have been proven to be infeasible. Thus,447

we can conclude the procedure.448

4.2 Infrastructure and Instances449

For our case study, we used data provided by Rhaetian Railway (RhB), a Swiss railway company450

operating most of the railway lines of the canton of Grisons. Following a methodology similar to451

Fuchs et al. (2022), we modeled the network at a mesoscopic level, as many sections consist of a452

single track. The infrastructure spans 380 km, with a complex terrain and operational restric-453

tions. Technical running times were calculated using the same procedures as those employed by454

RhB, ensuring that the instances reflect realistic railway operations.455
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Figure F7: The current line plan for RhB (RhB 2023).

Using the current line plan (see Fig. F7), we generated a series of problem instances ranging456

from 1 to 10 lines, ensuring that the selected line plans remained connected. The characteristics457

of these instances, including the number of events, activities, headway constraints, and routing458

alternatives, are summarized in Table T2.459

Each instance represents an increasing level of complexity, with additional lines introducing460

more routing alternatives, activities, and constraints. The number of vehicle transfer links varies461

depending on the vehicle-sharing policy:462

• No-Sharing: Vehicles remain restricted to operating within their assigned service, meaning463

they cannot transfer between different lines.464

• Full-Sharing: Vehicles can be shared across different lines (without dead-heading), al-465

lowing for a more flexible assignment and potentially reducing the number of required466

vehicles.467

Table T2: Instance characteristics by number of lines.

Lines Events Activities Headway Itinerary Routing Vehicle Transfers
Constraints Activities Alternatives No Full

1 160 1038 812 144 34 2 2
2 424 2799 2234 385 95 4 6
3 608 4316 3515 541 124 6 12
4 1011 12317 10986 889 196 8 14
5 1363 22134 20302 1232 287 10 22
6 1975 38640 36059 1753 405 12 32
7 2379 43343 40243 2114 490 14 36
8 2891 53404 49681 2535 573 16 42
9 2989 54339 50478 2619 590 18 46
10 3291 58425 54144 2887 644 20 50

19



As shown in Table T2, the number of events and activities increases with the number of468

lines, naturally resulting in more headway constraints, itinerary activities (dwells and trips),469

and routing alternatives. Vehicle transfer options increase with instance size, especially when470

allowing vehicles to circulate across different lines. This flexibility, denoted as Full in the table,471

is expected to reduce the overall fleet size compared to the No case, where vehicles are restricted472

to individual lines.473

4.3 Comparison of Performance474

To evaluate the performance of the three approaches—Mixed Integer Programming (MIP), Boolean475

Satisfiability (SAT), and Satisfiability Modulo Theories (SMT)—we solve test instances derived476

from subsets of the RhB line plan. Each instance in Table T2 is computed once under the477

Full-Sharing and No-Sharing policies. To assess the impact of time granularity, we solve each478

instance at four different discretisation levels: 6, 3, 2, and 1 seconds. To account for performance479

variability, each solver is executed five times per instance with different random seeds and a time480

limit of 5 hours. The plots below show the median computation times per approach. We also481

indicate the timeout threshold and highlight scaling behavior as the instance size increases.482
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(b) 3-second granularity.
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(c) 2-second granularity.
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(d) 1-second granularity.

Figure F8: Computation times for MIP, SAT, and SMT under No-Sharing strategy across four
discretisation levels.

The results under the No-Sharing policy in Fig. F8 clearly demonstrate the superior scal-483

ability of the SMT formulation. While SAT and MIP exhibit acceptable performance at coarse484

resolutions (6 and 3 seconds), both degrade significantly as the temporal resolution increases.485

SAT fails to solve many instances beyond six lines at 1-second resolution, and MIP times out486
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already at intermediate sizes. In contrast, SMT maintains stable runtime across all tested reso-487

lutions and solves all instances up to ten lines without reaching the time limit. This advantage488

in scalability becomes more pronounced as instance complexity grows, underlining the practical489

advantage of the SMT approach for large-scale, high-resolution periodic timetable optimization.490

Under the No-Sharing policy in Fig. F8, we observe clear tipping points beyond which solvers491

fail to compute solutions within the time limit. At coarser time steps (6 and 3 seconds), SAT492

performs comparably well and outperforms MIP, solving all instances quickly. As the granularity493

increases, its performance degrades sharply. At the 1-second level, it frequently times out494

beyond six lines. MIP only handles networks up to 4–5 lines reliably across all resolutions and495

for these counts offers competitive runtime. However, for instances of larger sizes, MIP is no496

longer suitable. In contrast, SMT remains the most stable, showing consistent performance at497

high resolution and with larger networks. Notably, the difference in behavior between solvers is498

already visible at intermediate sizes, suggesting a gradual rather than sudden breakdown.499
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(c) 2-second granularity.
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(d) 1-second granularity.

Figure F9: Computation times for MIP, SAT, and SMT under Full-Sharing strategy across four
discretisation levels.

The patterns under Full-Sharing in Fig. F9 are qualitatively similar but more pronounced500

than the ones with No-Sharing in Fig. F8. While SAT again performs well at coarse resolutions,501

it fails even earlier at finer ones. For example, at 1-second resolution, partial timeouts already502

appear from 5 lines onward. MIP behaves comparably to the No-Sharing case, while SMT contin-503

ues to scale reliably. Full-Sharing appears to amplify the runtime demands of solvers, likely504

because solution space flexibility introduces additional combinatorial complexity.505
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To complement the runtime analysis, we report the cumulative success rate of each solver.506

We track whether a solver found a feasible solution for every instance and time limit and plot507

the fraction of solved instances over time. These plots provide a comprehensive overview of how508

quickly and reliably each solver performs across different instance sizes.509
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Figure F10: Cumulative success rate for MIP, SAT, and SMT under No-Sharing strategy.
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Figure F11: Cumulative success rate for MIP, SAT, and SMT under Full-Sharing strategy.

The cumulative success plots in Fig. F10 (No-Sharing) and Fig. F11 (Full-Sharing) pro-510

vide a more detailed view of solver performance across instances. SMT consistently solves all511

configurations within two hours, often well before the limit. SAT performs well at coarse gran-512

ularities but exhibits a clear tipping point, beyond which runtime increases steeply and success513

rate drops. MIP solves the fewest instances overall, typically succeeding quickly or not at all.514

The relative impact of sharing strategies is also visible. Under Full-Sharing, solution space515

complexity increases, and solvers generally take longer, particularly for SAT. Conversely, SMT516

’s completion profile remains identical, mainly, confirming its suitability for large and complex517

configurations.518

These observations are consistent with the trends seen in computation times and are further519

reinforced by the success rate analysis. Across both circulation strategies, SMT emerges as520

the most reliable and scalable solver, maintaining low runtime and solving all instances. SAT521

performs well in simpler settings but scales poorly. MIP is only effective on small networks.522

Time discretisation and vehicle sharing influence solver performance, with finer time steps523
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and full-sharing policies introducing additional computational load.524

4.4 Effect of Time Discretisation and Vehicle Sharing Strategies on Vehicle525

Count526

This section analyses the impact of time discretisation on vehicle requirements, comparing the527

five different granularities used in Section 4.3. While the baseline resolution is without dis-528

cretisation, we apply four different levels of discretisation (1, 2, 3, and 6 seconds) to assess the529

impact of discretisation on the number of vehicles needed. Furthermore, we evaluate the poten-530

tial benefits of increased flexibility through vehicle sharing by comparing both vehicle circulation531

strategies (No-Sharing and Full-Sharing).532

When solving each scenario, we distinguish between two conflict configurations to isolate the533

effects of time discretization. This distinction helps separate the impact of rounding durations534

from the additional restrictions imposed by infrastructure conflicts. In real-world applications,535

rounding up activity durations is required for operational safety, but it can reduce schedule536

flexibility and increase travel times, potentially requiring more vehicles.537

We therefore analyse:538

1. No Conflicts: Only activity durations (e.g., running and dwell times) are rounded up539

to match the discretisation step, while headway and other conflict-related constraints are540

omitted. This setup quantifies the isolated impact of rounding.541

2. Conflicts: All activities, including those modeling headways and resource usage, are542

adjusted for discretisation and fully included in the model. This setup reflects the full543

impact of time discretisation under realistic operational constraints.544

Table T3 reports the required vehicles for each configuration. Parentheses indicate No545

Conflicts cases. We include the relative percentage increase in square brackets compared546

to the corresponding non-discretized baseline.547
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Table T3: Vehicle requirements under varying time discretisation steps for increasing network
sizes (given by the number of lines from 1 to 10). Values show absolute fleet size and the relative
increase over the non-discretised baseline.

Strategy Step 1 2 3 4 5 6 7 8 9 10

No-Sharing

No Conflicts

– 2 (0%) 4 (0%) 5 (0%) 7 (0%) 10 (0%) 14 (0%) 17 (0%) 20 (0%) 21 (0%) 24 (0%)
1 sec 2 (0%) 4 (0%) 5 (0%) 7 (0%) 10 (0%) 14 (0%) 17 (0%) 20 (0%) 21 (0%) 24 (0%)
2 sec 2 (0%) 4 (0%) 5 (0%) 7 (0%) 10 (0%) 14 (0%) 17 (0%) 20 (0%) 21 (0%) 24 (0%)
3 sec 3 (+50.0%) 5 (+25.0%) 6 (+20.0%) 9 (+28.6%) 12 (+20.0%) 16 (+14.3%) 19 (+11.8%) 22 (+10.0%) 24 (+14.3%) 27 (+12.5%)
6 sec 3 (+50.0%) 5 (+25.0%) 6 (+20.0%) 9 (+28.6%) 12 (+20.0%) 16 (+14.3%) 19 (+11.8%) 22 (+10.0%) 24 (+14.3%) 27 (+12.5%)

No-Sharing

Conflicts

– 3 (0%) 5 (0%) 6 (0%) 9 (0%) 12 (0%) 16 (0%) 19 (0%) 22 (0%) 23 (0%) 26 (0%)
1 sec 3 (0%) 5 (0%) 6 (0%) 9 (0%) 12 (0%) 16 (0%) 19 (0%) 22 (0%) 23 (0%) 26 (0%)
2 sec 3 (0%) 5 (0%) 6 (0%) 9 (0%) 12 (0%) 16 (0%) 19 (0%) 22 (0%) 23 (0%) 26 (0%)
3 sec 3 (0%) 5 (0%) 6 (0%) 9 (0%) 12 (0%) 16 (0%) 19 (0%) 22 (0%) 24 (+4.3%) 27 (+3.8%)
6 sec 3 (0%) 5 (0%) 6 (0%) 9 (0%) 12 (0%) 17 (+6.3%) 20 (+5.3%) 23 (+4.5%) 25 (+8.7%) 28 (+7.7%)

Full-Sharing

No-Conflicts

– 2 (0%) 4 (0%) 4 (0%) 6 (0%) 9 (0%) 12 (0%) 15 (0%) 17 (0%) 18 (0%) 21 (0%)
1 sec 2 (0%) 4 (0%) 4 (0%) 6 (0%) 9 (0%) 13 (+8.3%) 15 (0%) 17 (0%) 18 (0%) 21 (0%)
2 sec 2 (0%) 4 (0%) 4 (0%) 6 (0%) 9 (0%) 13 (+8.3%) 15 (0%) 18 (+5.9%) 19 (+5.6%) 21 (0%)
3 sec 3 (+50.0%) 4 (0%) 4 (0%) 7 (+16.7%) 10 (+11.1%) 14 (+16.7%) 16 (+6.7%) 19 (+11.8%) 20 (+11.1%) 22 (+4.8%)
6 sec 3 (+50.0%) 4 (0%) 5 (+25.0%) 8 (+33.3%) 10 (+11.1%) 14 (+16.7%) 16 (+6.7%) 19 (+11.8%) 20 (+11.1%) 23 (+9.5%)

Full-Sharing

Conflicts

– 3 (0%) 4 (0%) 4 (0%) 7 (0%) 10 (0%) 14 (0%) 17 (0%) 20 (0%) 21 (0%) 24 (0%)
1 sec 3 (0%) 4 (0%) 4 (0%) 7 (0%) 10 (0%) 14 (0%) 17 (0%) 20 (0%) 21 (0%) 24 (0%)
2 sec 3 (0%) 4 (0%) 4 (0%) 7 (0%) 10 (0%) 14 (0%) 17 (0%) 20 (0%) 21 (0%) 24 (0%)
3 sec 3 (0%) 4 (0%) 4 (0%) 7 (0%) 10 (0%) 14 (0%) 17 (0%) 20 (0%) 21 (0%) 24 (0%)
6 sec 3 (0%) 4 (0%) 5 (+25.0%) 8 (+14.3%) 11 (+10.0%) 15 (+7.1%) 18 (+5.9%) 21 (+5.0%) 22 (+4.8%) 25 (+4.2%)

The results in Table T3 confirm several previous trends. The Full-Sharing strategy consis-548

tently results in lower fleet requirements than No-Sharing, as the additional flexibility enables549

more efficient vehicle reuse. This effect is evident across all line counts and discretisation levels.550

As expected, vehicle requirements increase with network size due to higher service numbers and551

more interactions due to shared infrastructure. On average, across all configurations, adopting552

Full-Sharing instead of No-Sharing reduces the vehicle count by 12.9% in the No Conflicts553

setting and by 12.1% when headway constraints are included.554

Discretisation has a visible and cumulative impact. Under the No Conflicts setting, coarser555

time steps lead to systematic increases in fleet size. For example, under No-Sharing, shifting556

from the continuous-time baseline to 6-second discretisation increases total vehicle needs by 19557

vehicles, corresponding to an average increase of 15.3%. Under Full-Sharing, the increase is558

14 vehicles or 13.0%. These differences arise solely from reduced scheduling precision, without559

any infrastructure constraints.560

When headway constraints are introduced, the relative increases are smaller: seven vehicles561

(+5.0%) for No-Sharing and eight vehicles (+6.5%) for Full-Sharing. In this case, constraints562

already restrict the solution space, making it less sensitive to discretisation. Nevertheless, finer563

time steps remain beneficial in minimizing the required fleet.564

Notably, switching the vehicle circulation strategy cannot compensate for the increase due565

to coarser steps. Although Full-Sharing reduces vehicle needs overall, it does not eliminate566

the structural overhead introduced by time rounding. The cost of discretisation is additive to567

the cost of constraint-induced rigidity.568

These findings underscore the importance of modeling both precise timing and flexible cir-569

culation. Coarse discretisation inflates vehicle requirements significantly, even without conflicts.570

The impact is somewhat dampened but still measurable when infrastructure constraints are571
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present. Overall, modeling accuracy and resource flexibility are essential for efficient railway572

operations.573

4.5 Impact of Fixed Routes on Vehicle Requirements574

This section evaluates the effect of fixing train routes on vehicle requirements. While previ-575

ous sections assume routing flexibility, we explore a constrained variant where routes are pre-576

assigned. To ensure feasibility, the fixed routes are extracted from solutions previously computed577

with full routing flexibility. Specifically, we solve the original problem under flexible routing and578

enforce the obtained paths in a second run. This enables us to assess the cost of eliminating579

routing freedom while avoiding infeasibility.580

The experiments are run using the SMT-based solver with a one-second discretisation step581

under No-Sharing and Full-Sharing strategies. Table T4 reports the number of vehicles582

required in the fixed-routing case and the percentage increase compared to the flexible-routing583

baseline.584

Table T4: Vehicle requirements with fixed train routing for increasing network sizes (1–10 lines).
Values show absolute fleet size, with relative increase over the flexible-routing baseline.

Strategy 1 2 3 4 5 6 7 8 9 10

No-Sharing 3 (+0.0%) 5 (+0.0%) 6 (+0.0%) 9 (+0.0%) 13 (+8.3%) 17 (+6.3%) 19 (+0.0%) 22 (+0.0%) 24 (+4.3%) 27 (+3.8%)
Full-Sharing 3 (+0.0%) 4 (+0.0%) 5 (+25.0%) 8 (+14.3%) 11 (+10.0%) 14 (+0.0%) 17 (+0.0%) 21 (+5.0%) 22 (+4.8%) 24 (+0.0%)

The results in Table T4 confirm that fixing routes generally increases the required fleet585

size. For the No-Sharing strategy, the average increase is 2.3%, while for Full-Sharing it is586

slightly higher at 5.9%. This difference highlights that, while full-sharing provides more efficient587

vehicle utilisation under flexible routing, it is also more sensitive to restrictions once flexibility588

is removed. Nevertheless, even under fixed routing, in most cases, the configuration of the589

Full-Sharing configuration still requires fewer vehicles overall than the No-Sharing baseline,590

confirming that the inherent benefits of vehicle sharing persist despite routing constraints.591

The impact of fixed routing remains negligible for small networks, where route alternatives592

are limited and the feasible space is less constrained. However, from medium-sized networks593

onward, the effect becomes visible. In the Full-Sharing case, pre-assigned paths require up to594

25% more vehicles than their flexible counterparts (e.g., instances with three lines). Interestingly,595

increases are not uniformly distributed. While some configurations (e.g., instances with 6 or 10596

lines) show no penalty, others, such as with 4 or 5 lines, exhibit sharp increases. This suggests597

that the availability of alternative paths plays a key role: where the flexible model can exploit598

routing options to compress turnaround times or vehicle transitions, the fixed model is more599

likely to induce schedule fragmentation and idle time.600

Overall, the findings reinforce the role of routing flexibility in reducing rolling stock require-601
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ments. While fixing paths may be operationally convenient, it should be applied with care in602

larger systems, as it can eliminate optimization potential and increase operational cost through603

larger fleet needs. The variability in impact across network sizes suggests that routing decisions604

should be informed by network structure and available topological alternatives, rather than605

treated as static inputs.606

4.6 Benefit of Integration607

This section investigates the benefit of jointly optimizing train routing, periodic timetabling,608

and vehicle circulation, rather than solving these components sequentially. Traditional planning609

pipelines typically approach these problems in isolation: routes are fixed first, then a timetable610

is computed—often optimizing travel times—and finally a feasible vehicle circulation is derived.611

While intuitive, this neglects interdependencies that can impact resource efficiency.612

An assumption sometimes made is that minimizing travel times indirectly reduces fleet size.613

For example, Liebchen and Möhring (2004) report that minimizing passenger travel time on the614

Berlin Underground led to fewer required vehicles, despite vehicle count not being part of the615

objective. Our study offers another perspective by explicitly targeting vehicle minimization.616

Lieshout (2021) previously demonstrated the benefit of integrating periodic timetabling and617

vehicle circulation regarding travel time and operational costs. In contrast, our work focuses618

exclusively on the required fleet size and extends the integrated formulation to include routing619

decisions. This allows us to isolate the impact of full integration while avoiding the need to620

model passenger travel times directly.621

To quantify the effect, we compare two approaches:622

• Integrated Solve: Uses our model, where routing, timetabling, and circulation are jointly623

optimized to minimize the number of vehicles.624

• Sequential Solve: Routing is fixed first, then timetabling is solved with an objective of625

minimal travel time, followed by vehicle circulation. Multiple runs with different initial626

seeds ensure robustness of the results.627

The results are shown in Table T5, which reports the required fleet size for the sequential628

solve and its relative increase over the integrated baseline.629

Table T5: Vehicle requirements under sequential optimization for increasing network sizes (1–10
lines). Values show absolute fleet size and relative increase over the integrated baseline.

Strategy 1 2 3 4 5 6 7 8 9 10

No-Sharing 3 (+0.0%) 5 (+0.0%) 7 (+16.7%) 9 (+0.0%) 13 (+8.3%) 19 (+18.8%) 21 (+10.5%) 25 (+13.6%) 29 (+26.1%) 32 (+23.1%)
Full-Sharing 3 (+0.0%) 4 (+0.0%) 6 (+50.0%) 8 (+14.3%) 11 (+10.0%) 19 (+35.7%) 21 (+17.6%) 26 (+30.0%) 25 (+19.0%) 30 (+25.0%)

The results show that the integrated approach consistently reduces fleet size compared to the630
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sequential strategy. Under the No-Sharing policy, the average reduction is 11.7%, increasing631

with the number of lines. For Full-Sharing, the improvement reaches up to 35.7%, highlighting632

how routing flexibility and vehicle sharing jointly benefit from integration. Notably, savings633

persist even in smaller configurations, with a marked increase in larger networks, where decisions634

across planning stages interact more tightly.635

The increased vehicle count in the sequential solve stems from misalignments between rout-636

ing, scheduling, and circulation. Minimizing travel time can yield structurally inefficient timeta-637

bles, such as tight or incompatible turns, requiring additional vehicles to preserve feasibility. In638

contrast, the integrated model internalizes such constraints early and identifies globally efficient639

schedules.640

While sequential approaches are easier to implement and align with traditional planning641

practice, they leave significant optimization potential untapped. Our results reinforce that642

jointly solving routing, scheduling, and circulation is essential to minimize operational cost and643

fleet size, especially as system complexity grows.644

5. Conclusion645

This paper presents a novel, integrated optimization model for periodic timetabling, train rout-646

ing, and vehicle circulation in railway systems. We propose the VCR-PESP formulation and647

introduce the first Satisfiability Modulo Theories (SMT)-based solution method tailored to this648

problem. In contrast to traditional approaches using Mixed Integer Programming (MIP) or649

Boolean Satisfiability (SAT) (Großmann 2016, Kümmling et al. 2015), our SMT formulation en-650

ables continuous-time modeling and supports scalable solving without time discretisation (Ar-651

mando et al. 2004, Leutwiler and Corman 2022).652

Using real-world data from the Swiss narrow-gauge network of RhB, we conduct an extensive653

computational study to assess the impact of time discretisation, routing flexibility, and vehicle654

sharing strategies. Our results show that coarser discretisations significantly increase fleet re-655

quirements due to rounding, and this effect persists even in conflict-free configurations. While656

vehicle sharing across lines can mitigate some of this overhead, only continuous-time models—as657

enabled by SMT—consistently avoid these losses without compromising resolution.658

In all tested scenarios, our SMT solver outperforms SAT and MIP, solving large-scale instances659

with higher precision and shorter runtimes. We also show that restricting routing or solving660

planning stages sequentially leads to unnecessary vehicle use. In contrast, jointly optimizing661

routing, timetabling, and vehicle circulation within a single model yields more efficient and662

implementable solutions—confirming insights from earlier integration studies (Lieshout 2021,663

Goossens et al. 2006) and extending them to include routing.664
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Future work could extend our model to incorporate passenger-centric objectives such as travel665

time and transfer quality (Polinder et al. 2021, Gattermann et al. 2016, Kroon et al. 2014), or666

to address robustness and real-time re-optimization. Our approach lays a strong foundation for667

high-resolution, scalable, and fully integrated railway planning using modern constraint solving668

techniques.669
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