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Abstract

In this study, the periodic train timetabling problem is formulated using a time-space graph formulation that exploits the
properties of a symmetric timetable. Three solution methods are proposed and compared where solutions are built by
what we define as a dive-and-cut-and-price procedure. An LP relaxed version of the problem with a subset of constraints
is solved using column generation where each column corresponds to the train paths of a line. Violated constraints are
added by separation and a heuristic process is applied to help to find integer solutions. The passenger travel time is
computed based on a solution timetable and Benders’ optimality cuts are generated allowing the method to integrate the
routing of the passengers. We propose two large neighborhood search methods where the solution is iteratively destroyed
and repaired into a new one and one random iterative method. The problem is tested on the morning rush hour period of
the Regional and InterCity train network of Zealand, Denmark. The solution approaches show robust performance in a
variety of scenarios, being able to find good quality solutions in terms of travel time and path length relatively fast. The
inclusion of the proposed Benders’ cuts provide stronger relaxations to the problem. In addition, the graph formulation
covers different real-life constraints and has the potential to easily be extended to accommodate more constraints.

Keywords: Transportation, Periodic Train Timetabling, Matheuristics, Column Generation,
Passenger Routing

1. Introduction

The planning process of railway companies is complex and is usually categorized into three
main levels: strategic, tactical and operational (Bussieck et al., 1997). These levels form a
hierarchical process used as a decision-making tool where each of the levels includes different
problems whose solution is used as an input for the problems at the subsequent level as depicted
in Figure 1.

In this study, the focus is mainly on the generation of timetables which is at the tactical
level of the planning process. For that, the network and lines running on it, decided at the
strategical level, are assumed fixed. The process of generating a timetable is formulated as the
Train Timetabling Problem (TTP) and its main goal is to determine the arrival and departure
times at the stations for each of the train lines.

The departure and arrival times are subjected to multiple track capacity constraints and spe-
cific requirements from the railway operating company. An obvious example of track capacity
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Figure 1: Railway planning process diagram adapted from Lusby et al. (2011)

constraints is that two trains cannot be in the same track segment at the same time. In order to
avoid having two trains at the same track segment at the same time, a headway is defined. The
headway refers to the minimum time interval between two consecutive train movements and it
is defined by the signaling system along the track. Likewise, a headway is defined for both de-
partures and arrivals of consecutive trains along the same track segment. Moreover, a minimum
dwell time is necessary to allow passengers to get on and off the train as well as changing drivers
at specific stations. In the same way, minimum running times between two stations are limited
by the train speed, acceleration, breaking capabilities and an additional buffer time also known
as timetable margin.

In general, the objectives are related to three main groups: customer satisfaction, robustness
and cost-efficiency. These objectives may be conflicting in most cases. For instance, a timetable
where all passengers have direct connections to their destinations at a high frequency would incur
in an enormous operational cost for the train operating company (TOC). Therefore, a compromise
between conflicting objectives should be found.

1.1. Focus of the paper

In this study, we focus on the generation of timetables from the passengers’ point of view
while also analyzing the robustness of the solution. The model presented relies in two main
assumptions: (1) the running times between stations are considered fixed and (2) the timetable
should be symmetrical or close to symmetrical (we elaborate on this in Section 3.3). The main
contributions of the paper are two-fold: We present (1) a new graph formulation that allows
us to directly generate non-conflicting schedules for all the trains of a line and also to include
additional operational constraints with minor adaptations and, (2) a Benders’ decomposition for-
mulation that enables the integration of passenger routing in the timetabling generation process.

1.2. Paper structure

Section 2 lists several methods to solve the TTP through an extensive literature review. In
Section 3 the model used and its characteristics are described. The solution methods used to solve
the problem are described in Section 4, where each of the steps in the algorithms and how they
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interact together are carefully explained. Section 5 introduces the case studied, summarizes the
computational results obtained from different tests and conducts an analysis of them. The paper
concludes in Section 6 with a generic overview of the whole study and further study proposals.

2. Literature review

The literature about train scheduling is extensive. The different publications apply a wide
range of methods to different cases. Some of them consider just a corridor or a junction whereas
others study a whole network. Moreover, the nature of the resulting timetable (i.e. periodic or
non-periodic) also affects the algorithm proposed. Several extensive surveys have been published
(see Cordeau et al. (1998), Caprara et al. (2007), Hansen (2009), Lusby et al. (2011), Cacchiani
and Toth (2012) or Harrod (2012)).

Most of the studies that model a network assuming the periodicity of the timetable (periodic
timetable) are based on the Periodic Event Scheduling Problem (PESP) first introduced by Ser-
afini and Ukovich (1989). Odijk (1996) proposed a cutting plane algorithm to solve the PESP.
Integer variables are used to ensure the travel intervals are respected and continuous variables to
determine the arrival and departure times modulo the period. Later, Nachtigall (1998), Liebchen
and Möhring (2002) and Peeters (2003) studied the Cycle Periodicity Formulation (CPF) that
leads to a significant speed up in the solution times compared to earlier models. Given the ef-
fectiveness of the PESP, these models have been used to solve many network cases, whereas
non-periodic approaches are used more often to model single-line corridors or congested net-
works where it may not be possible to schedule all trains in an efficient way.

Szpigel (1973) presented one of the first Integer Linear Program (ILP) formulations for the
non-periodic TTP. The formulation is regarded as a job-shop scheduling problem where jobs
(trains) need to be assigned to machines (track segments). Szpigel (1973) solved it using branch-
and-bound applied to a Brazilian single-track line. Jovanovic and Harker (1991) proposed a
Mixed Integer Linear program (MILP) formulation where the arrival/departure times are defined
with continuous variables and the order of trains with binary variables and tries to find a reliable
timetable. Carey and Lockwood (1995) proposed a mix of heuristic and branching procedure to
solve a similar MILP as the one presented by Jovanovic and Harker (1991) in a one-way corridor,
and Carey (1994) extended it to a two-way corridor showing that no additional constraints are
needed. In general, most of the models proposed for solving non-periodic timetables are used
for scheduling multiple competing timetables from different operators.

Furthermore, Brannlund et al. (1998) introduced a pure ILP formulation where the time was
discretized and therefore, the formulation could be represented as a graph where the nodes rep-
resent the arrival and departure time instants to each station. This new formulation is referred to
as time-space graph formulation but cannot be directly applied to large instances due to the large
number of binary variables. As a result, further studying the LP relaxation of the model becomes
more attractive and different methods have been developed based on it. The ILP formulation
proposed by Caprara et al. (2002) defines a variable for each arc in the graph and it is solved
using Lagrangian relaxation combined with sub-gradient optimization. Cacchiani et al. (2008)
proposed a formulation where the variables refer to whole paths instead, and solved it applying
column generation together with separation techniques. Cacchiani et al. (2010b) extended the
formulation presented by Caprara et al. (2002) to be applied in a network considering both pas-
senger and freight trains and solved it using a similar procedure. Min et al. (2011) proposed a
method for solving the train-conflict resolution problem with a column-generation based algo-
rithm that takes advantage of the separability of the problem. Using a heuristic for the pricing
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problem (PP), the method is able to get near optimal conflict-free solutions in a few seconds.
Cacchiani et al. (2013) applied dynamic programming to solve the clique constraints that arise
in the graph formulations and developed an exact method whose performance is compared with
various heuristics in Cacchiani et al. (2010a). Fischer (2015) formulates the TTP using a time-
indexed graph and presents a method based on Lagrangian relaxation that improves the quality
of the relaxation. Fischer and Schlechte (2017) extends the approach to also allow overtaking
possibilities. Zhou et al. (2017) and Zhang et al. (2019) also take advantage of a graph formu-
lation and effectively solve it using dual decomposition techniques. The methods are applied to
the Beijing-Shanghai high speed corridor and show a better performance than the PESP model.

Last but not least, combining train timetabling and passenger routing has also been studied.
Kinder (2008) extended the PESP model to a time-space graph and implemented an iterative ap-
proach where the timetable is re-planned after doing passenger routing. Gattermann et al. (2016)
present an integrated model that finds timetables and passenger routes in which passengers are
distributed temporally using time-slices. Borndörfer et al. (2017) also integrates timetabling and
passenger routing in one model. The model tests and analyzes different passenger routing mod-
els on timetable optimization yielding significant improvements in travel time. Farina (2019)
proposes a two-phase large neighborhood search heuristic for the combined train timetabling
and passenger routing problem. The heuristic has similarities with the work presented in this
paper, but employs different destroy and repair methods. Polinder et al. (2020) also implement
a two-phase heuristic that aims at minimizing the passenger travel time. The method also ac-
counts for the waiting time of the passengers at the stations and shows promising results in
real-life instances. Several studies also refer to the problem at hand as the demand-oriented
train timetabling problem. Li et al. (2017) implements a mixed integer quadratic model for
the dynamic version of the problem and shows that it can effectively reduce the total passenger
travel time. Zhou et al. (2019) studies passengers’ booking decisions instead of the classic queue
principle and uses a two-level method which combines a bi-level programming model with a
priority-based heuristic which also shows benefits in terms of travel time for passengers.

2.1. Contribution and comparison to existing models
The modeling approach used in this paper is based on the time-space graph proposed in

Caprara et al. (2002). As discussed in the literature review, this modeling approach has also
been used in several later papers (e.g. Cacchiani et al. (2008) and Cacchiani et al. (2010b)). In
Caprara et al. (2002), the integer programming model was solved using a Lagrangian relaxation
heuristic. The Lagrangian subproblem solves a longest path problem through an acyclic network.
In Cacchiani et al. (2008), the problem was solved using column generation where the pricing
problem also searches for longest paths through an acyclic network. We also solve the problem
using column generation but use a pricing problem that can determine 1, 2 or 4 paths in one go.
The pricing problem is solved as a standard shortest path problem (further details in Sections
3 and 4). This is possible due to tight frequency and symmetry constraints. There are several
benefits of this approach: 1) The symmetry and frequency constraints are entirely handled in the
pricing problem and fewer constraints are necessary in the master problem. 2) The LP relaxation
produced by the master problem is potentially stronger compared to an approach that handles
symmetry and frequency constraints in the master problem. 3) Fewer pricing problems must be
solved. We believe that this is a major contribution of our paper.

Caprara et al. (2002) already constructed a cyclic timetable. We use this as a basis to generate
cyclic timetables with a one hour period, useful for modeling the passenger train timetabling
problem that a train operator faces. Normally, this problem is solved using a PESP model and, to
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the best of our knowledge, it is the first time that the time-space graph approach is used for this
application.

The solution approach presented in this study constructs the timetable while considering the
routing of the passengers. A routing sub-problem is used to generate Benders’ cuts that guide the
model to optimize the passenger travel time. As the literature review shows, this is an emerging
topic in passenger train timetabling and we believe that the paper at hand proposes a simple but
useful approach for integrating the passenger routing with the train timetabling problem.

The method proposed in the paper at hand is based on work done in the master’s thesis of
Bernardo Martin-Iradi (Martin-Iradi, 2018).

3. Problem formulation

The notation is based on the one from Cacchiani et al. (2010b). Let S = {1, ..., s} denote
the set of stations in the network. The network can be represented as a mixed multi-graph
N = (S , E ∪ A) where each vertex i ∈ S represents a station in the network and each edge
e = (h, i) ∈ E represents a single-track segment between two stations with no intermediate sta-
tions in between that is used by trains traveling in both directions (i.e. from h to i and from i to
h). Finally, each arc a = (h, i) ∈ A represents a double-track segment between stations h and i
with no intermediate stations that can be used only by trains traveling in one direction (i.e. from
h to i). The graph can contain multiple arc/edges connecting the same two stations. For instance,
in the network here studied there are segments with four tracks between two same stations (two
in each direction). Therefore, the adjacent stations in between can be connected with four arcs
(two in each direction) in the multi-graph. For convenience, for each station i ∈ S , let denote
δ+

N(i) ⊆ E ∪ A the set of edges incident to i and arcs leaving i, and δ−N(i) ⊆ E ∪ A the set of edges
incident to i and arcs entering i.
Furthermore, for both mono and bi-directional tracks, minimum time intervals between depar-
tures/arrivals (i.e. headway) on the same track are required. Therefore, for each e ∈ E ∪ A and
station i of e, let denote:

• d(i, e): minimum time interval between consecutive departures of trains traveling in the
same direction from i on the track segment e.

• a(i, e): minimum time interval between consecutive arrivals of trains traveling in the same
direction at i on the track segment e.

Moreover, in the case of single-tracks, additional time interval requirements need to be set for
trains traveling in opposite directions. Therefore, for each edge e ∈ E and station i of e where
i ∈ Ŝ and Ŝ is the set of stations connected by single-track segments, we denote:

• f (i, e): minimum time interval between an arrival at i on e and a departure from i on e of
trains traveling in opposite directions.

• g(i, e): minimum time interval between a departure from i on e and an arrival to i on e of
trains traveling in opposite directions.

Furthermore, let S ∗ ⊆ Ŝ be the stations only connected by single-track segments (i.e. a station
that is adjacent to at least one single track segment and at least one double-track segment is
placed in Ŝ but not in S ∗, while a station that is adjacent to at least one single track segment and
adjacent to zero double-track segments is placed in both Ŝ and S ∗). Therefore, for station i ∈ S ∗

we define:
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• h(i): minimum time interval between arrivals to i of trains arriving from any incident track
segment.

In this case study, due to safety requirements, a minimum value of d(i, e), a(i, e) and h(i) is
defined, whereas f (i, e) = 0 and g(i, e) is implicitly given by:

g(i, e) = minimum travel time from i to h on e + minimum travel time from h to i on e,

where h is the other endpoint of e. The reason for f (i, e) = 0 is based on the rail infrastructure.
At station i, each of the platforms has its own track and usually the length of the tracks until their
merging point allows a train to depart on e as soon as the other train has arrived from e.

3.1. Lines and timetables notation

The different lines link two major stations with a number of intermediate stations in between.
Let L = {1, ..., l} denote the number of operating lines in the network space and D = {1, 2} the
direction of the line, D = 1 for direction out of Copenhagen and D = 2 for direction towards
Copenhagen. Let Υ be the set of trains that cover the L lines and D directions. For each train j ∈
Υ, we denote l j and d j to its line and direction. Moreover, let f j and e j be the starting and ending
station respectively and let S j := { f j, ..., e j} ⊆ S be the ordered set of stations visited by train
j (stopping or not). Some segments between stations are formed by quadruple-track segments,
meaning that each train can choose between two tracks to travel along that track segment. In
this study, the quadruple-track segments connect various consecutive stations and it has been
assumed that the train runs along the same track and cannot switch to the other track during
the whole quadruple segment (see Figure 2). Let N j = (S j, A j) be the auxiliary network for
each train j ∈ Υ where each arc in A j is either an arc in A or an edge in E with an orientation,
corresponding to the unique travel direction of j along the single-track. A timetable for each
train is given by the departure time at f j and the arrival time at e j, and the arrival and departure
times for the intermediate stations S j\{ f j, e j}. Let φ j(a) denote the running time along arc a ∈ A j
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Figure 2: Illustration of the quadruple-track segment modelling in one direction.

of train j ∈ Υ. Let ωmin
j (i) denote the minimum dwell time at station i for train j ∈ Υ where

i ∈ S j \ { f j, e j}. In the same way, there is an upper bound in the dwell time (i.e. ωmax
j (i)) in the

form of an additional percentage of the minimum dwell time (ωmax
j (i) ∝ ωmin

j (i)). Note that, for a
line containing N stations, there are N-1 minimum running times and N-2 minimum dwell times
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defined in one direction. The mentioned parameters above are defined for each train meaning that
the running and dwell time sets are defined independently for trains in different directions for the
same line, as they may differ. Finally, the time horizon is defined as T = {1, ..., t} referring to a
whole hour discretized into time instants of half a minute (|T | = 120 time instants) and each line
has an associated running frequency F l indicating how many trains per hour cover each direction
of that line.

3.2. A graph representation

Figure 3: Graph representation of a train path with a time period of |T | = 10. The nodes at t = 0 correspond to a duplicate
of the nodes of t = |T |.

The problem can be defined using graphs to represent the possible timetables (from now on
referred to as train paths). Let G = (V,R) be a directed and acyclic space-time graph. A sub-
graph G j = (V j,R j) can be defined for each train j ∈ Υ (from now on referred to as Train graph)
in which the nodes represent the arrivals or departures at a station at a given time instant. Figure
3 shows an example of a train path represented using a time-space graph.

The node set has the form

V j = {σ j, τ j} ∪
⋃

a={h,i}∈A j

(Ua
i ∪Wa

h )

where σ j and τ j are the artificial source node and artificial sink node respectively and the sets
Wa

h for h ∈ S j \ {e j} and Ua
i for i ∈ S j \ { f j} represent the set of time instants where a train can

depart from station h or arrive to station i on the track represented by arc a ∈ A j respectively
(also called departure and arrival nodes). Let u,w ∈ V j be nodes of the node set and let θ(u) be
the time instant associated with node u. Furthermore, let ∆(u,w) := θ(w) − θ(u) denote the time
interval between nodes u and w if θ(w) ≥ θ(u) and ∆(u,w) := θ(w) − θ(u) + T otherwise. Due to
the periodic nature of the time horizon T , it is said that node u precedes or coincides with node
w (i.e. u � w) if ∆(w, u) ≥ ∆(u,w) as it is assumed that all the travel times used in this study
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case are far from the time horizon of one hour. Table 1 illustrates the time interval calculation
with one example. For convenience, for each station i ∈ S j, let denote δ+

N j (i) ⊆ A j the set of arcs

Table 1: Example of the time interval calculation between two nodes with a cycle time |T | = 60

θ(u) θ(w) ∆(u,w)
10 15 5
15 10 55

leaving i, and δ−N j (i) ⊆ A j the set of arcs entering i. The arc set R j for each graph can be defined
by four main types of arcs.

Starting arc set: These arcs connect the artificial source node with the set of nodes for the
departure of the first station in the line. These arcs have a null cost (free arcs).

Segment arc set: These arcs connect the nodes related to the departure time from one station
to the nodes related to arrival time to the next station in the line. Furthermore, the arc needs to
satisfy that ∆(w, u) = φ j(a) where φ j(a) denote the travel time for arc a ∈ A j. The cost of the arc
corresponds to the travel time between the departure and arrival instants in the respective sets.

Dwell arc set: These arcs connect the nodes related to the arrival time to one station with the
nodes related to departure time from the same station in the line. Furthermore, the arc needs to
satisfy that ∆(u,w) ∈ [ωmin

j (i), ..., ωmax
j (i)] for i ∈ S j \ { f j, e j}. The cost of the arc corresponds to

the dwell time between the arrival and departure instants in the respective sets.
Ending arc set: These arcs connect the set of nodes of the arrival to the last station in the

line with the artificial sink node. These arcs have a null cost (free arcs).
As a result, the timetable for train j ∈ Υ is defined by any path from the artificial source node

σ j to the artificial sink node τ j.

3.2.1. Main assumptions
The final graph formulation presented in this study is based on the assumption that the travel

time of each train along each track segment joining two stations is fixed. In other words, it is
not possible to slow down the train along the track segment and, therefore, the departure time
from one station uniquely determines the arrival time at the next station. Even if slowing down
is something that has to be done at the operational level, this assumption is supported by the
fact that, in practice, slowing down a train between two stations in most cases is equivalent to
forcing the train to stop in an endpoint station of the track segment for a longer time and then
to travel at the regular speed along the track. This statement is not true in general but it holds
for realistic cases. In particular, experimental results performed by Caprara et al. (2006) show
that the solution values found by heuristic procedures are marginally affected by this additional
constraint, whereas the corresponding running time per iteration is widely reduced, since the
graph G turns out to be much smaller (for each train, the number of segment arcs between two
stations is equal to the number of departure nodes). Furthermore, the above assumption simplifies
the mathematical representation of the problem, yielding simpler and stronger overtaking and
crossing constraints (see sections 3.4.3 and 3.4.4).

Another characteristic of the model assumed is the need for a symmetric timetable. When
the train services are identical in both running directions it is easier to plan the timetable since
the train path in one direction uniquely defines the path of the train in the opposite direction.
Therefore, symmetric timetables are easier to plan and are more attractive to passengers as same
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transfer times are provided between pairs of trains in both directions (Liebchen, 2007). Never-
theless, this type of timetable reduces the degrees of freedom in the planning process and it is
more suitable when the passenger demands are similar in both directions.

As a result, these two main assumptions can lead to a new, more efficient, graph formulation.
On one side, keeping the running times fixed reduces the number of nodes to half since the arrival
of a train is directly defined by the previous departure. On the other side, assuming symmetric
paths for each line requires just creating one train path for a line, as the remaining line train paths
are automatically defined.

3.3. Symmetric Line graph

Figure 4: Representation of a path in the Symmetric Line graph as the combination of two paths in the respective Train
graphs. In this example the symmetry gap is set to κ = ±1. The time axis on the left for the Symmetric Line graph
denotes the departure time instants for the left train and the time axis on the right denotes the arrival times of the right
train. The nodes corresponding to t = 0 are a duplicate of the nodes corresponding to t = |T | and are added to help
visualizing the symmetry of the paths in relation to the symmetry axis at t = 5.

The Symmetric Line graph formulation is defined, as the name states, per each line instead
of per train, meaning that fewer graphs are needed. Ideally, each of the Symmetric Line graphs
would include half of the nodes of one Train graph due to the fixed running times and symmet-
ric paths. Nevertheless, in practice, due to the nature of the infrastructure, the running times in
opposite directions for a given track segment are sometimes slightly different, meaning that two
exactly symmetrical paths cannot be achieved. Therefore, a maximum symmetry gap κ is con-
sidered. A line is considered symmetrical, if, for each station, the departure time of the train in
one direction and the arrival time of the train in the opposite direction sum to the period time T .
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The symmetry gap adds flexibility to this and allows to also consider the line to be symmetrical
if the sums of departure and arrival times are within the interval (i.e. |T | ± κ). Figure 4 shows
an example of two trains of a line that are considered symmetrical and their corresponding path
in the new proposed graph. In this figure, the exactly symmetrical times at a station are depicted
by larger nodes in the Symmetric Line graph and the symmetric instants that are within the gap
considered (κ) are depicted with smaller nodes. The primary time axis indicates the departures
times of the left-to-right train and the secondary one indicates the arrival times of the right-to-left
train. Starting with station A, the departure time of the left-to-right train is at time instant 1 and
the arrival of the right-to-left train is at time instant 10. The sum of both times is 11 which is
not equal to the planning horizon (10 in this case). Since the value is within the symmetry gap
(10 ± 1) it is symbolized with a small node. For station B, the departure time of the left-to-right
train is at time instant 5 and the arrival time of the right-to-left train is at time instant 5. The sum
of both times is equal to 10 which is equal to the planning horizon meaning the departure and
arrival of the trains are in perfect symmetry which is symbolized with the larger node. Last, in
station C, the arrival of the left-to-right train is at time 7 whereas the departure of the right-to-left
train is at 2. The sum of both times sums to 9, which is not perfectly symmetrical but again lies
within the symmetry gap (10 ± 1) and therefore it is depicted as a small node.

Figure 5: Representation of the Train graph nodes associated with one node (circled in red) of the Symmetric Line graph
formulation. Notice that by assuming fixed running times the departure time from A directly defines the arrival time at B
and vice versa. This example also shows that the train paths are perfectly symmetrical with respect to the symmetry axis.
The nodes corresponding to t = 0 are a duplicate of the nodes corresponding to t = |T | and are added to help visualizing
the symmetry of the paths in relation to the symmetry axis at t = 5.

Each node in the graph represents the departure and arrival times of two symmetrical train
paths of the same line along a track segment. In other words, one node from the Symmetric
Line graph notation is equivalent to four nodes of the Train graph notation (see Figure 5). As we
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increase the symmetry gap, the amount of symmetrical departure and arrival time combinations
increases in accordance. Since each of those combinations can be seen as a node in the graph,
the growth is translated in (1 + 2|κ|) nodes per time instant and station.

Regarding the arc set, the fact of assuming fixed running times allows us to merge the segment
and dwell arc in a single segment+dwell arc. The weight of these arcs is given by the sum of
running and dwell time for both trains. In order to avoid crossings or headway conflicts at a
single-track segment, all arcs that result in incompatible departures, arrivals or crossings are not
included in the graph. This ensures that all paths in the new graph correspond to feasible and
compatible train paths for the line.

Regarding lines using the quadruple track segments (see Figure 2), it is assumed that trains
make the same choice of track in both directions.

The output of the Symmetric Line graph corresponds to a set of compatible train paths cov-
ering the line. Depending on the nature and frequency of the line, the amount may vary between
one, two or four train paths, as explained below:

If the line runs only during rush hour, trains only operate in one direction. This means that no
symmetry is needed and a simple Train graph with fixed running times can be used. The output
of it is just one train path, except if the frequency of the line is two trains per hour, then the output
is two identical train paths exactly separated half an hour.

For regular lines, the output of the Symmetric Line Graph will be two symmetric train paths
in opposite directions. If the frequency of the line is two trains per hour and direction, the output
of the graph will correspond to two identical pairs of symmetric train paths separated by half an
hour.

3.4. ILP formulation

In this section, the model is formulated as an ILP. In order to illustrate the different parts of
the formulation, the notation of the Train graph is used. As it is explained in Section 3.3, the set
of nodes of the Symmetric Line graph are formed by combinations of node sets from the Train
graph formulation.

3.4.1. Formulation without track capacity constraints
The problem can be formulated as a version of the Set Packing Problem (SPP) that aims to

minimize the sum of total path lengths. The binary variable λq ∈ {0, 1}, q ∈ Q defines if the
group of line paths q is included in the optimal solution where Q is the set of possible line group
paths. The parameter cq denotes the cost of choosing the group of line paths q ∈ Q that is the
sum of path lengths. The formulation without the track capacity constraints is stated as follows:

min
∑
q∈Q

cq · λq (1)

s.t. ∑
q∈Ql

λq = 1 ∀l ∈ L (2)

λq ∈ {0, 1} ∀q ∈ Q (3)

The objective function minimizes the cost (path lengths) of the solution train paths. Constraints
(2) ensure that train paths are chosen to cover each line where Ql is the set of possible line group
paths for line l ∈ L and constraints (3) state the binary property of the decision variable.
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3.4.2. Headway constraints
Headway constraints are one of the track capacity constraints and ensure the minimum head-

way times between consecutive arrivals and departures at stations in the network.∑
v ∈ Ua

i : v � u
∆(v, u) < a(i, a)

∑
q ∈ Qv

λq ≤ 1, i ∈ S , a ∈ δ−N(i), u ∈ Ua
i , (4)

∑
v ∈ Wa

i : v � w
∆(v,w) < d(i, a)

∑
q ∈ Qv

λq ≤ 1, i ∈ S , a ∈ δ+
N(i),w ∈ Wa

i , (5)

∑
a ∈ δ−N(i) ∩ E

∑
v, u ∈ Ua

i : v � u
∆(v, u) < h(i)
θ(u) = t

∑
q ∈ Qv

λq ≤ 1, i ∈ S ∗, t ∈ T, (6)

Let Qv be the set of line group paths that use node v. Constraints (4) and (5) enforce that the
minimum headway distance between consecutive arrivals and departures at each station respec-
tively, of trains in the same direction, is respected. Moreover, constraints (6) ensure that in
stations connected by single-track segments, the minimum headway between trains arriving to it
is respected.

3.4.3. Overtaking constraints

Figure 6: Illustration of an overtaking where a(h, a) = 2 and d(i, a) = 2. The left one is the simple version of the
constraint while the right one is the stronger version implemented in this study.
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It is not allowed that two trains traveling in the same direction on the same track overtake
each other.

A basic example of an overtaking is shown on the left side of Figure 6 where both train
departures are incompatible. The basic overtaking constraint would enforce that, at most, one
slow train will depart from t = 0 or one fast train will depart from t = 2. In this study, a stronger
version of this basic constraint is formulated based on the ones from Cacchiani et al. (2010b).

The following constraints (7) are defined for every pair of trains j, k along a = (i, h) that is
an arc in both auxiliary networks N j and Nk. Moreover, j is considered the ”slow” train and k
is the train that can actually overtake it. Therefore, the travel time of train j should be greater
than the one from train k (i.e. φ j(a) > φk(a)). For a constraint, we define an earliest possible
departure from i for trains j and k. These departure nodes are denoted v1 and v2 respectively.
Node v1 ∈ Wa

i ∩ V j and node v2 ∈ Wa
i ∩ Vk correspond to departure nodes that are incompatible

with each other (i.e. if train j departs at θ(v1), then train k cannot depart at θ(v2) and vice versa).
The two trains j, k are considered incompatible when either min{∆(v1, v2),∆(v2, v1)} < d(i, a),
meaning that their departures are too close in time or min{∆(u1, u2),∆(u2, u1)} < a(i, a) where
u1, u2 are the respective arrival nodes for j, k corresponding to v1, v2, meaning that their arrivals
to the next station are too close in time or v1 ≺ v2 ≺ u2 ≺ u1 meaning that train k overtakes train
j along the track.
Then, v3 ∈ Wa

i ∩ V j can be defined as the earliest possible departure of train j that is compatible
with θ(v2) such that v1 ≺ v3. Analogously, v4 ∈ Wa

i ∩ Vk can be defined as the earliest possible
departure of train k that is compatible with θ(v1) such that v2 ≺ v4. It can be seen that any
departure of train j from [v1, v3) is incompatible with any departure of train k from [v2, v4).

This stronger version of the constraint is illustrated in the right side of Figure 6. Let Ql j

w be
the set of line group paths that use node w and belong to train j of line l. Nodes v1 and v3 are
depicted as the first and second slow train nodes in time respectively and nodes v2 and v4 are
depicted as the first and second fast train nodes in time respectively. Note that in the illustration
the minimum departure and arrival headway (a(i, e) and d(i, e)) are respected for the trains but
they overtake each other along the track.

∑
w ∈ Wa

i ∩ V j :
v1 � w ≺ v3

∑
q ∈ Ql j

w

λq +
∑

w ∈ Wa
i ∩ Vk :

v2 � w ≺ v4

∑
q ∈ Qlk

w

λq ≤ 1,∀ j, k ∈ Υ, v1, v2 ∈ Wa
i ,

(where l j , lk, d j = dk, i, h ∈ S j ∩ S k, a = (i, h) ∈ (A j ∩ Ak)) (7)

3.4.4. Crossing constraints
It is not allowed that two trains traveling in opposite directions are on the same single-track

segment at the same time.
A basic example of a crossing is shown on the left side of Figure 7 where both departures are

incompatible. The basic constraint corresponding to this crossing would enforce that, at most,
one slow or fast train will depart from t = 0. In this study, a stronger version of this basic
constraint is formulated based on the ones from Cacchiani et al. (2010b).

The following constraints (8) are defined in a similar way to constraints (7). They are defined
for every pair of trains j, k traveling in opposite directions such that a = (i, h) and (h, i) are arcs
in the auxiliary networks N j and Nk respectively and correspond to the set of edges E in the

13



Figure 7: Illustration of a crossing where f (h, e) = 2. The left one is the simple version of the constraint while the right
one is the stronger version implemented in this study.

network. For a constraint, we define an earliest possible departure from i and h for trains j and
k respectively. These departure nodes are denoted v1 and v2 respectively. Node v1 ∈ Wa

i ∩ V j

and node v2 ∈ Wa
h ∩ Vk correspond to departure nodes that are incompatible with each other

(e.g. if train j departs at θ(v1), then train k cannot depart at θ(v2) and vice versa). The two trains
j, k are considered incompatible when either u2 � v1 and ∆(u2, v1) < f (i, e) or u1 � v2 and
∆(u1, v2) < f (i, e), meaning that arrival to and departure from the same station are too close in
time or v1 ≺ u2 and ≺ v2 ≺ u1 meaning that train j and train k cross each other along the track.
Then, v3 ∈ Wa

i ∩ V j can be defined as the earliest possible departure of train j that is compatible
with θ(v2) such that v1 ≺ v3. Analogously, v4 ∈ Wa

h ∩ Vk can be defined as the earliest possible
departure of train k that is compatible with θ(v1) such that v2 ≺ v4. It can be seen that any
departure of train j from [v1, v3) is incompatible with any departure of train k from [v2, v4).

This stronger version of the constraint is illustrated in the right side of Figure 7. Nodes v1
and v3 are depicted as the first and second slow train nodes in time respectively and nodes v2
and v4 are depicted as the first and second fast train nodes in time respectively. Note that even if
the minimum arrival headway ( f (h, e)) is respected by the trains departing, they cross each other
along the track.

∑
w ∈ Wa

i ∩ V j :
v1 � w ≺ v3

∑
q ∈ Ql j

w

λq+
∑

w ∈ Wa
h ∩ Vk :

v2 � w ≺ v4

∑
q ∈ Qlk

w

λq ≤ 1,∀ j, k ∈ Υ, v1 ∈ Wa
i , v2 ∈ Wa

h

(where l j , lk, d j , dk, i, h ∈ S j ∩ S k, a = (i, h) ∈ A j ∩ E, (h, i) ∈ Ak ∩ E) (8)
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3.4.5. Sibling constraints
There are specific pairs of lines that share identical or similar first and last stations but have

slightly different stopping patterns. These pairs of lines (from now on referred to as sibling
lines) should be spread along the cycle time as much as possible. In order to do so, the sibling
constraints behave in the same way as the departure headway constraints (5). Let Ts denote
the minimum time interval between consecutive departures of sibling lines in one direction at
each station. Finally let Ξ := {(m1, n1), ..., (mk,mk)} denote the set of sibling line pairs along the
network where mk, nk ∈ L.

∑
v ∈ Wa

i : v � w
∆(v,w) < Ts

∑
q ∈ {Ql j

v ∪ Qlk
v }

λq ≤ 1, ∀(l j, lk) ∈ Ξ, d ∈ D,w ∈ Wa
i ,

(where j, k ∈ Υ, i ∈ S j ∩ S k, a ∈ δ+
N(i) ∩ (A j ∩ Ak)) (9)

Constraints (9) ensure that all the departures of sibling lines from any common station are spread
at least a time interval of Ts in each direction.

3.5. Passenger routing model formulation

In order to route the passengers between stations, we introduce a multi-commodity flow
problem (MCFP) formulation which is integrated with the ILP formulation by using a timetable
solution as input information. Let Ḡ = (V̄ , Ā) be a graph formed by the set of nodes V̄ and set
of arcs Ā. There is a node for each line l ∈ L, station s ∈ S and time t ∈ T . We note that each
node is used for both directions of a line. Let K be the set of commodities. We define each
pair of origin-destination stations as a commodity k ∈ K and the demand travelling between
the corresponding origin and destination stations is given by an origin-destination (ODk) matrix.
Additionally, there is an artificial source and sink node ok, dk per commodity k ∈ K. The set Ā of
passenger flow arcs is formed by different subsets:

• Ār ⊆ Ā: Timetabling arcs. Set of arcs corresponding to riding a timetabled train between
consecutive stations. Due to the fixed running times, there are T arcs between consecutive
stations per line and direction.

• Ād ⊆ Ā: Dwell arcs. Set of arcs corresponding to waiting time at a station, either dwelling
on the train or waiting for the train to transfer to. There is one arc connecting two consec-
utive time instants in each station.

• Ās ⊆ Ā: Source and sink arcs. Set of arcs leaving one of the artificial source nodes ok

or entering one of the artificial sink nodes dk. For any origin station i, the artificial source
nodes of commodities having station i as origin, are connected with the departures of trains
stopping at station i. Likewise, all the arrivals of trains stopping at station i are connected
with the sink node of commodities that have station i as destination.

• Āt ⊆ Ā: Transfer arcs. Set of arcs to transfer between pairs of lines at a common station.
For each node at a station with transfer options, there is one transfer arc to each train
belonging to different lines, that also visit the station.
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Figure 8: Passenger routing graph example with a cycle period of |T | = 5. In this case a subset of nodes and arcs is
represented for trains of two different lines covering a subset of stations. The number in the node indicates a time instant.
Only the artifical source and sink nodes for one commodity k ∈ K are shown, which in this case, is the pair of stations
(1, 4).

A small example of the different elements in the graph are shown in Figure 8. We identify a
possible routing path for passengers travelling from station 1 and 4 (i.e. from ok to sk). This path
consists of (1) boarding a train from line 1 that departs at time 1 from station 1, (2) getting off at
station 3 and transferring to a train of line 2 that departs at time 4 and, (3) getting off at station 4
at time 5. Notice that, in this example, we consider a minimum transfer time of 2, meaning that
the transfer arc will allow us to board a train at time 5 at earliest.

Let f k
a be a variable that states if arc a ∈ Ā is used for commodity k ∈ K and let ta be the

time to traverse arc a ∈ Ā. To ease the problem formulation, we denote δ+(v) ⊆ Ā to the set of
arcs leaving from node v ∈ V̄ and δ−(v) ⊆ Ā to the set of arcs entering to node v ∈ V̄ . Finally, let
xa be a variable that defines if timetabling arc a ∈ Ār can be used. These variables refer to the
timetable solution given and are kept constant in this problem. Notice that the formulation could
be easily integrated with (1)-(9) by using a constraint that maps the λq variables to xa. In order
to avoid additional mathematical notation, this step has not been included.

The problem is formulated as follows:
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min
∑
k∈K

ODk

∑
a∈Ā

ta f k
a (10)∑

a∈δ+(ok)

f k
a = 1 ∀k ∈ K (11)∑

a∈δ−(dk)

− f k
a = −1 ∀k ∈ K (12)∑

a∈δ+(v)

f k
a −

∑
a∈δ−(v)

f k
a = 0 ∀k ∈ K, v ∈ V̄\{ok, dk} (13)

f k
a − xa ≤ 0 ∀k ∈ K, a ∈ Ār (14)

f k
a ≥ 0 ∀k ∈ K, a ∈ Ā (15)

The objective function (10) minimizes the travel time of all passengers. Constraints (11) and
(12) ensure that one arc is leaving from the source node and arriving to the sink node respectively
for each commodity. Constraints (13) ensure the flow conservation and constraints (14) only
allow to use arcs enabled by a timetable solution. Finally, constraints (15) define the variables
as linear positive. Notice that the capacity of the arcs is not limited, meaning that all passengers
can board the same train. According to DSB (the train operator of the network studied), this
is a fair assumption for this case. This method is based on studies such as the ones proposed
by Schöbel and Scholl (2006) and Rezanova (2015). The problem can be decomposed into K
different sub-problems, one per commodity and the totally unimodular structure of the problem
formulation allows us to obtain an integer optimal solution by solving the LP model.

4. Solution method

Three solution methods are presented are based on what we call, a dive-and-cut-and-price
procedure that heuristically solves the ILP formulation presented in Section 3.4. A Restricted
Master Problem (RMP) is initialized with a subset of rows. Promising columns and violated cuts
are added to it by column generation and separation procedure respectively in order to find an
optimal LP solution. Then, branching is enforced through a dive heuristic in order to achieve
integrality. Finally, the passengers are routed using the solution timetable and the travel time
computed by solving (10)-(15).

Two of the methods are based on a large neighborhood search that iteratively transforms
the solution by partially destroying and re-building it again. One of them uses the MCFP as a
sub-problem to generate Benders’ cuts for the RMP, helping to further integrate the passenger
routing. The third method is a simple iterative process where a solution is fully constructed at
every iteration.

Each of the steps in the methods is explained in detail in the following sections.

4.1. Column generation procedure
Taking into account the cycle time, the size of the network and the symmetry gap allowed,

the number of possible line train paths to be considered is extremely large. In order to handle
that amount of variables efficiently, column generation techniques are necessary.

A reduced version of the Master Problem (MP) is initially considered known as the Restricted
Master Problem (RMP) that includes only a subset of the variables. These initial variables can
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just be a set of ”dummy” artificial variables that satisfy the constraints of the RMP. For each line
l ∈ L a pricing problem is created (i.e. PPl) that is in charge of providing line paths objects
(q ∈ Ql) that can potentially improve the current solution.

The formulation of the RMP is identical to the one of the original problem (see constraints
(1)-(9)) except for the relaxed version of the decision variable (constraint (16)).

λq ≥ 0 ∀q ∈ Q (16)

4.1.1. Pricing Problem
The goal of the PP is to find new promising train paths for the RMP. There is one PP per

line and their function is to create a group of line train paths (referred to as a column) with the
potential to improve the objective function. Here is where the Symmetric Line graph formulation
described in section 3.3 becomes relevant. The use of a single graph for all the train paths of a
line reduces the PP to a single shortest path problem. It can be noticed that the dual value of
constraints (i.e. (4) - (9)) can be subtracted on the edge weights. Since, they are non-positive,
we guarantee that the graph has always non-negative edge weights. Therefore, and knowing
that the graph is directed acyclic (see Section 3.3), this problem can be solved using a dynamic
programming algorithm.

Finally, to compute the reduced cost of a given path we need to subtract the dual value of
constraint (2) for the given line, which is a real number and can lead to a final negative reduced
cost. Every time the PP finds a column q ∈ Ql with a negative reduced cost, it is added as a new
variable to the RMP and it is included in all the constraints where it has a non-zero coefficient.

4.2. Separation procedure

It is decided to add Constraints (7)-(9) by separation as the total amount is too large and only
a reduced amount of them may be binding. The headway constraints are considered from the
beginning in order to provide guidance to the column generation process.

Once the column generation procedure stops providing columns with negative reduced cost
the separation procedure is applied. The separation of constraints (7)-(9) is done by enumeration
and are checked in the same iteration. Every constraint that is violated by the current solution is
added to the RMP.

Once the violated constraints are added to the model, the column generation procedure should
be restarted. Adding more constraints to the model modifies the solution space and new columns
with negative reduced cost can be found. The overall procedure of column generation and sepa-
ration is summarized in Algorithm 1.

4.3. Dive heuristic

λ = 0.25 

λ = 0.75 

λ = 0.5 
λ = 1 

Figure 9: Fragment of a graph containing paths from a fractional solution where the nodes in the red circles are fraction-
ally used.
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Algorithm 1 Column generation and Separation pseudo-code

1: procedure colGenAndSep(fixedNodes)
2: x = {} . start with empty solution
3: PP← f ixedNodes . fix nodes in graphs
4: repeat
5: repeat
6: x← solve(RMP)
7: for all lines do
8: λ← solve(PP(line)) . generate a new column
9: if ĉ(λ) < 0 then

10: RMP← λ . add column with negative reduced cost
11: end if
12: end for
13: until no more columns with negative reduced cost
14: RMP← violatedConstraints(x)
15: until no more violated constraints
16: return x
17: end procedure

The optimal solution for the MP can be fractional. In order to find an integer solution, a dive
heuristic method is applied. The solution λq values are added to each of the graph nodes affected
by that column. This measures the ”usage” of each node and, if the solution is fractional, this
means that some of the graph nodes are fractionally used (see Figure 9). The dive heuristic selects
one of the fractionally used nodes and enforces to be part of the final solution, meaning that the
final integer solution must contain that node. In order to do that, the shortest path problem
is divided into two smaller and simpler ones where the chosen node works as the destination
vertex in one of them and as the origin vertex in the other one. Apart from fixing the node, all
the previously generated columns from the same graph that do not include the node need to be
removed from the RMP. Once the heuristic step is concluded, the column generation should be
started again as new promising columns may be generated. One advantage of the dive heuristic is
that it can lead faster to an integer feasible solution. A disadvantage of this method is that some
branches of the tree are left unexplored and forcing the integrality of specific nodes that were
fractional can lead to an infeasible final solution. This method only considers valid the solutions
where all the trains of each line are scheduled. Therefore, in this study, if any column of the
initial dummy set is part of a solution, the solution is considered infeasible. However, the initial
set of dummy columns could potentially be used to allow solutions with fewer scheduled trains.

Most of the times, there are multiple fractionally used nodes in the solution and a criterion to
select one is needed. In this study, we have opted for choosing any fractional node at random.

The procedure is summarized in Algorithm 2.

4.4. Passenger routing

The main objective of the model is to improve the passenger travel time (PTT). So far, the
method minimizes the length of the train paths. This avoids extra additional dwelling of the
trains at the stations and allows passengers traveling in the train to reach their destination fast.
However, many passengers are required to transfer between trains to reach their destinations.
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Algorithm 2 Dive heuristic pseudo-code

1: procedure diveHeuristic()
2: [ f ixedNodes] = {} . initialize empty list
3: repeat
4: x← colGenAndS ep( f ixedNodes) . generate LP solution
5: if x is fractional then
6: [ f ixedNodes]← newNode . fix a new node
7: end if
8: until x is integer or infeasible
9: return x

10: end procedure

Therefore, minimizing these transfer times becomes part of the overall objective of optimizing
the passenger travel time.

Given a timetable solution to the RMP, the total passenger travel time is computed by solving
(10)-(15).

4.5. Benders’ cuts
After solving (10)-(15) for computing the total passenger travel time, we can generate a

Benders’ optimality cut for the RMP based on the dual values of the solution. A solution to the
original RMP, fractional or not, always allows to route all the passengers and therefore, feasibility
cuts are not generated. We define variable zk ≥ 0 for each commodity k ∈ K. Let π1

k , π
2
k ∈ R

be the dual variables related to constraints (11) and (12) respectively. Additionally, we denote
π3

kv ∈ R to the dual variable of constraint (13) and π4
ka ≤ 0 to the dual variable of constraint (14).

The arising optimality cut for each commodity k can be formulated as follows:

zk ≥ π
1
k − π

2
k +
∑
a∈Ār

π4
kaxa (17)

These cuts are added to the RMP and the objective function is updated to account for the zk

variables as follows:
min
∑
q∈Q

cqλq + α
∑
k∈K

ODkzk (18)

where α ∈ R+ is a parameter that defines the weight of the passenger travel time in the objective
function. The reader may wonder why we do not just minimize

∑
k∈K ODkzk since this is the true

objective considered in this paper (minimizing passenger travel time). The reason is that adding
Benders’ cuts slows the processing of each node in the dive-tree significantly, and therefore
it is not possible to add all the Benders’ cuts that actually are violated if we want the overall
algorithm to finish within reasonable time (we use a one hour time limit in the computational
results). Therefore, we only add a subset of the violated Benders cuts and the zk variables are
only an approximation of the true passenger travel time. This implies that it is beneficial to keep
the path length component of the objective function as it guides the search towards solutions
that also are attractive from a passenger travel time point of view. The cuts can be added by
separation in the same way as the constraints mentioned in Section 4.2.

As a timetable solution is given as input, most of the arcs of the routing graph are not enabled,
meaning that xa = 0 in constraint (14). Looking at the objective function of the dual problem,
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which corresponds to the right-hand side of equation (17), the dual values of these arcs can
fluctuate unrealistically as their value does not longer have an effect on the objective value of the
dual problem. This can have a potential negative effect on the quality of the generated cuts. In
order to avoid this, for all arcs where no flow should be allowed, we enable an infinitesimally
small capacity ε. If xa is not strictly zero for any arc in the graph anymore, the dual variables
π4

ka are expected to be more realistic while still obtaining a near-optimal flow. This ε-capacity
method is based on the Kelley+ approach suggested by Fischetti et al. (2017).

4.6. Large Neighborhood Search

The main objective of the algorithm is to minimize the PTT. Therefore, every time a solution
is computed, its PTT is compared with the best one found so far and updated if the new one is
better. The process is framed in a Large Neighborhood Search (LNS) proposed by Shaw (1998)
where the current solution is iteratively transformed into a different one. The transformation
occurs by partially destroying the current solution and repairing it again. Our LNS is inspired by
the work of Ropke and Pisinger (2006) and the whole process is summarized in Algorithm 3.

Algorithm 3 Large neighborhood search pseudo-code

1: procedure LNS()
2: repeat
3: x← diveHeuristic() . generate an initial solution
4: until x is feasible
5: xb = x
6: repeat
7: xt ← repair(destroy(x)) . generate a new solution
8: if xt is feasible then
9: c(xt)← routing(xt) . compute PTT based on the routing of passengers

10: if c(xt) < c(xb) then . compare passenger travel time
11: xb = xt

12: x = xt . only accept improving solutions
13: end if
14: end if
15: until time limit
16: return xb

17: end procedure

The repair method is the already mentioned dive-and-cut-and-price whereas the the destroy
method selects randomly ρ graph paths from the solution and removes them. This method is in-
spired by the ones implemented by Barrena et al. (2014). Furthermore, only solutions improving
the PTT are accepted, adding relevance to the passengers’ routes.

Two versions of the LNS method are implemented: (1) An LNS method without Benders’
cuts and, (2) an LNS method with Beders cuts. In the latter, these cuts are added in the separation
procedure, meaning that in line 14 of Algorithm 1, we compute equation (17) together with (7)-
(9). The potential number of violated Benders’ can be very large. This can result in not being
able to solve the root node within the algorithm time limit. In order to avoid this, a internal time
limit is set to stop generating Benders’ cuts.
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Finally, in order to analyze the quality of the solution, this is compared with a lower bound
solution. The lower bound (LB) value for the total path lengths is computed as the LP solution
value at the root node in the initial dive heuristic (line 3 in Algorithm 3). The lower bound for the
PTT is computed given a solution where all the trains operate at the minimum running and dwell
times (i.e. shortest train paths) and passengers are able to transfer between any pair of lines at
the minimum transfer time.

4.7. Random iterative method
An additional method to the LNS is proposed for comparison. The dive-and-cut-and-price

procedure is repeated iteratively where each iteration is independent from the previous one. Since
the randomness is introduced in the branching process, the root node is solved once and used as
the re-start point at a new iteration. The entire method is summarized in Algorithm 4.

Algorithm 4 Random iterative method

1: procedure RandomIterative()
2: x = {} . Initialize empty solution
3: xb = {} . Initialize best solution
4: xr ← solveRootNode(x) . solve root node
5: repeat
6: xt ← diveHeuristic(xr) . apply dive heuristic
7: if xt is feasible then
8: c(xt)← MCFP(xt) . compute PTT based on the routing of passengers
9: if c(xt) < c(xb) then . compare passenger travel time

10: xb = xt

11: end if
12: end if
13: until time limit
14: return xb

15: end procedure

5. Case study

The case studied here covers the Regional, Intercity and IntercityLyn (high-speed) network
of Zealand, Denmark as seen in Figure 10. More specifically, the scope covers a one hour
period during morning rush hour. This means that more lines run towards Copenhagen. Once, a
timetable for this period is obtained, it can be rolled out for the rest of the day by removing or
adding rush hour lines.

The network is formed by 15 lines, covering 43 passenger stations. 3 of the lines only run
during rush hour, which makes a total of 27 trains per hour to schedule. This translates in 12
Symmetric Line graphs, as two identical lines are handled as one line with a frequency of two
trains per hour.

The number of tracks and the direction of trains running along them vary along each corridor.
Three different types of track segments between stations are present in this network. A single-
track segment, where trains can circulate in both directions but there can only be one train on the
segment at a time. A double-track segment, where two tracks connect two stations allowing trains
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Figure 10: Network considered in the case study. Each line represents a frequency of one train per hour and direction
and the dashed lines represent trains only running during rush hours (DSB, 2018)

to travel in both directions (one track per direction) and a quadruple-track segment, formed by
four tracks between two consecutive stations and trains can travel in both directions (two tracks
per direction). The quadruple-track segments allow two trains going in the same direction to
overtake each other along the segment.

In the network considered, there are two main single-track segments: the segment between
Holbæk and Kalundborg and the segment connecting Køge Nord and Næstved along the southern
corridor. The rest of the network is connected by double-track segments with the exception of
the segments between Høje Taastrup and Roskilde that are formed by quadruple-tracks.

The following input data has been provided by DSB, a danish TOC:
Minimum running time: This parameter states the minimum required time for a train to

travel between two specific stations. This time interval is usually depending on the rolling stock
type and the speed limits on the track segment. A value is given for every track segment con-
necting two consecutive stations in each line and direction.

Minimum dwelling time: This parameter states the minimum required time for a train to
dwell at a specific station. This time is usually the time required by the passengers to board and
leave the train. A value is given for every station visited by each line and each direction (i.e.
between 30 seconds and 2 minutes).

Sibling lines: As mentioned in Section 3.4.5, there are specific pairs of lines that have similar
or identical routes which are required by DSB to be as separated as possible in the timeline. There
are three pairs of these lines considered in this case study. For example, the two lines reaching
Kalundborg.

Minimum headway between trains: In this case study, three minimum headway values are
given: 1) Minimum headway between two consecutive departing trains in the same track segment
and direction, 2) minimum headway between two consecutive arriving trains in the same track
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and direction and 3) minimum headway between two consecutive trains arriving from single-
tracks in opposite directions.

Single-platform stations: Some stations along the single-track segments have only one plat-
form meaning that the station can only host one train at a time and a crossing between two trains
is not allowed. It is assumed that, for the rest of stations in the network, any train arriving from
an adjacent track segment has an available arriving platform.

Origin-Destination matrix: This matrix defines the number of passengers per hour traveling
between each pair of stations. It does not consider passengers from stations outside the network
(i.e. people entering the network from Germany or cities in Jutland). There is a total of 1806
pairs.

Station Clusters: A reduced version of the origin-destination pairs is proposed by defining
a set of representative stations in the network, and clustering the neighboring ones. As shown
in Figure 11, these stations correspond to the end-of line stations and stations where the track
segments branch in different directions (i.e. Roskilde and Køge Nord). The purpose of this net-
work setup is only to reduce the number of commodities K considered when generating Bender’s
cuts while still capturing the routing decisions of most passengers. The evaluation of the total
passenger travel time in the rest of the solution method is done using the entire network.

Figure 11: Network considered in the case study where the stations are divided into clusters, and the one marked in red
is the representative station. Based on (DSB, 2018).

Minimum transfer time: In order for passengers to transfer between trains at a station,
a minimum transfer time of 5 minutes is defined as a rule of thumb, meaning that if the time
difference between the arrival of one train and the departure of another is lower, the transfer time
corresponds to the time interval plus |T |.

The authors refer to Martin-Iradi (2018) for further details on the case study.
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5.1. Instances

A number of instances are created based on the data from DSB. By changing the following
four parameters, a total of 21 instances are obtained.

HWk: Minimum headway between consecutive arrivals and departures at København H.
This station is seen as one of the most congested stations in the network where all lines stop
at and, therefore, the headway at this station becomes interesting to analyze individually. This
parameter measures in minutes the minimum interval between consecutive arrivals or departures
at København H in the same track segment.

HWn: Minimum headway between consecutive arrivals and departures at any station in the
network. This parameter measures in minutes the minimum interval between consecutive train
arrivals or departures at each track segment and station in the network.

HWs: Minimum headway between consecutive departures of sibling trains in the same di-
rection from common stations. The pair of sibling lines may have slightly different stopping
patterns or running and dwell times. This makes impossible to separate both train paths exactly
half an hour during their entire trip. Therefore, a lower bound is needed that should be respected
in any station. In this case, a minimum headway is defined for the consecutive departures from
each station.
κ: maximum symmetry gap in ± minutes between departure and arrival of trains in opposite

direction belonging to the same line.

5.2. Computational results

The model has been entirely written in Julia language (Bezanson et al., 2017), modelled
using JuMP (Lubin and Dunning, 2015) and using CPLEX v. 12.9 as the solver. It has been
tested in an Intel Xeon Processor X5550 (quad-core, 2.66 GHz) using one thread. Due to the
large amount of parameter setting combinations, a base case is defined with the minimum values
of each parameter (except for κ). Then, each parameter is tested independently keeping the others
fixed. The parameter values for the base case are shown in Table 2. All instances are tested with
a maximum dwell time of 3 minutes at each station. A parameter tuning has been conducted to
determine the degree of destruction (ρ) of the destroy method which has been set to 5.

Table 2: Base case parameter setting

HWk

(min)
HWn

(min)
HWs

(min)
κ

(±min)
3 3 15 1.5

5.2.1. Impact of the pricing problem
In order to measure the benefits of the new graph formulation. A variant of the method (from

now on referred as Train-graph model) is tested where the graphs only generate the train paths
of a line in one direction and the symmetry is ensured by adding the respective constraints in
the RMP. Due to the poor performance of the Train-graph model, only a comparison of the root
node calculation is shown in Table 3. For the given network, the Symmetric Line graph is able
to provide a stronger lower bound in significantly less time and fewer iterations. Actually, the
lower bound of the Train-graph model corresponds to the sum of minimum running and dwell
times of the trains to be scheduled (i.e. constant term).
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Table 3: Root node results of the Symmetric Line graph model and the Train graph one.

Model Obj. value (min) CG Iters Time (s)
Train graph 1981 39 27

Symmetric Line graph 1998.5 7 3

In addition, the dive heuristic based on the Train graph model is not able to find a feasible
solution within the 1 hour limit. We believe that these results show that the graph formulation is
an important part of the proposed solution method.

5.2.2. Instance results
The three solution methods presented are run 10 times for each scenario and the average

values calculated. The time limit for each algorithm run is set to 1 hour and the internal time
limit to stop adding Benders’ cuts is set to 10 % of the algorithm time limit (i.e. 6 minutes). The
value of α is set to the inverse of the number of passengers travelling within the time period.

Tables 4-7 show the results for each of the scenarios created by parameters HWk, HWn,
HWs and κ respectively. The first column indicates the solution method and the second one
the parameter value of the scenario. The third and fourth columns display the best and average
solution values of PTT respectively found across the 10 runs which are compared to the lower
bound defined at the end of Section 4.6. The fifth and sixth columns indicate the average sum
of path lengths (PL) relative to the best integer solutions with and without considering the fixed
term compared to the lower bound defined at the end of Section 4.6. The seventh column displays
the number of algorithm iterations or equivalent repetitions of lines 7-14 in Algorithm 3 done per
1h run. The next three columns indicate the internal average iterations per algorithm iteration.
First, the number of dive heuristic iterations which can be interpreted as the number of branches
performed (i.e. nodes fixed). Next, the number of times the current LP solution is checked
for violated constraints and, finally, the number of column generation iterations. The eleventh
and twelfth columns shows the average number of columns and additional rows (7)-(9) added
per algorithm iteration respectively. The thirteenth column indicates the number of Benders’
cuts added in total. The next three columns indicate the proportional amount of time spent
solving the RMP, PP and in the separation procedure respectively in relation to the total amount
of time spent finding a solution. Last, the feasibility rate is stated that displays the proportion
of algorithm iterations that result in a feasible integer solution. The average solution values are
displayed in Figures 12-15 which also include results of a variant of the LNS method without
Benders’ cuts that only accepts solutions that improve the paths’ length. More detailed results
about this method variant can be found in Table A.10 in the Appendix.

The LNS-based methods that include passenger travel time in the acceptance criterion show
a better performance in all instances. A main reason lies on the amount of iterations each method
is able to perform. This suggests that partially destroying the solution is effective and enables
exploring multiple neighborhoods. Table 8 shows the average solution quality, over all instances
considered, in terms of passenger travel time and paths’ length for the 4 variants of the solution
method. The table shows that the addition of Benders’ cuts results in a similar but marginally
worse overall solution quality than the LNS method that did not use the Benders cuts. Adding
these cuts increases the complexity of the RMP leading to fewer algorithm iterations and this
causes the two methods to end with a similar solution quality.

All the methods find near optimal results both in PTT and path lengths in a reasonable amount
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of time for most of the scenarios. From Figures 12-15 a correlation between the length of the
paths and the passenger travel time can be inferred. This is a realistic assumption since 95.8 %
of all passengers in the network can reach their destination boarding a single train. However,
optimizing the length of the train paths does not necessarily result in a shorter passenger travel
time. This is deduced from the results of the LNS method with paths’ length as acceptance
criterion. In general, the solutions have indeed shorter train paths but the total passenger travel
time is worse than for other methods. This shows that the simple integration of passenger travel
time objective into the LNS method, through the acceptance criterion, is important in order to
reach high quality solutions.

Intuitively, the parameter with the highest impact in PTT variation is the headway at the entire
network, followed by the one at Copenhagen’s central station. The similar performance for most
of the values of HWs indicates that this headway parameter has a very low impact in the solution
space. The variability in the solution given by the randomness of the method allows, in cases
like this where the instances are very similar, to have slightly better results even if the parameter
value is more restrictive. Ideally this should not happen and we believe that a longer running
time or more algorithm runs per instance would smooth the trend. Moreover, little variation in
PTT is shown for the different values of maximum symmetry gap. This indicates a trade-off

between the maximum gap allowed and the iterations the algorithm is able to perform within the
time limit. A higher value of κ, expands the solution space but fewer algorithm iterations hinder
the exploration of the neighborhood efficiently. On the other hand, if κ is too tight, the solution
space becomes highly restricted and, regardless of the number of iterations, the solution quality
decreases. It should be noted that the instances with the lowest values of the headway parameters
correspond to the same instance. Different randomized seeds have been used in all cases and
therefore, the results are not identical.

In terms of speed, it can be seen that the problem becomes harder to solve when increasing
the parameter values. In particular, for high HWn values, the LP becomes very hard to solve.
Likewise, a higher value of κ, increases the complexity of the graph formulation and that is
reflected in the time spent solving the pricing problems. Nevertheless, all methods are able to
find solutions for HWk = 6 minutes which is the maximum possible as 10 trains arrive per hour
in København H through the same corridor. Also, solutions are found for values up to HWn = 5
minutes and higher values were not further tested as they do not seem realistic for the network
studied. Moreover, the algorithm finds solutions for HWs = 27 minutes which seems to be the
maximum allowed due to the differences in running times of the pairs of sibling lines. To put the
solution values into perspective, we can compare them to the manual timetable planned by DSB
(PTT = 33.21, PL = 2049.5). It can be noticed the presented methods produce better results
for all instances. However, the manual timetable considers additional operational aspects such as
rolling stock assignment and track crossings and therefore, we cannot see it as a fair comparison.
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Table 4: Average performance of the algorithms for different values of HWk .

Method HWk
(min)

Best PTT
gap (%)

PTT
gap (%)

PL
gap (%)

Var. PL
gap (%)

Alg
It.

Avg
Dive It.

Avg
Sep It.

Avg
CG It.

Avg
Columns

Avg
+rows (%)

Benders’
cuts

Avg RMP
time (%)

Avg PP
time (%)

Avg Sep
time (%)

Feasibility
rate (%)

LNS
(with

Benders’
cuts)

3 2.54 2.75 0.35 40.0 80.6 2.4 6.0 125.0 299.5 1.41 124 38 34 13 91
4 2.61 2.85 0.51 58.0 77.4 2.2 5.6 126.5 345.3 1.04 156 40 31 15 90
5 2.72 2.94 0.86 98.0 83.3 2.0 5.0 107.6 315.8 0.79 182 39 32 14 90
6 2.71 3.04 1.03 117.1 85.3 1.7 4.1 94.5 313.5 0.56 177 42 29 13 89

LNS
(without
Benders’

cuts)

3 2.26 2.61 0.24 27.7 143.6 0.6 3.9 98.7 238.4 1.03 0 40 28 4 94
4 2.37 2.83 0.55 62.9 134.1 0.7 3.8 115.2 294.7 1.08 0 43 30 4 88
5 2.56 2.82 0.34 38.3 169.3 0.5 3.1 74.1 218.1 0.59 0 37 27 4 93
6 2.71 3.00 0.79 90.0 164.2 0.6 2.9 79.2 245.8 0.44 0 40 27 3 92

Random
Iterative

3 2.64 2.90 0.29 32.9 27.6 6.8 22.5 227.3 773.0 11.85 0 62 31 5 44
4 2.82 3.11 0.54 62.0 19.0 7.0 23.2 272.3 999.1 9.82 0 72 24 3 45
5 2.83 3.13 0.73 83.1 16.7 7.1 23.1 316.7 1251.6 8.97 0 85 13 1 41
6 2.82 3.63 1.26 144.3 8.7 6.1 18.1 351.7 1688.6 4.93 0 87 12 1 36

Table 5: Average performance of the algorithms for different values of HWn.

Method HWn
(min)

Best PTT
gap (%)

PTT
gap (%)

PL
gap (%)

Var. PL
gap (%)

Alg
It.

Avg
Dive It.

Avg
Sep It.

Avg
CG It.

Avg
Columns

Avg
+rows (%)

Benders’
cuts

Avg RMP
time (%)

Avg PP
time (%)

Avg Sep
time (%)

Feasibility
rate (%)

LNS
(with

Benders’
cuts)

3 2.54 2.78 0.40 45.7 74.9 2.2 5.9 125.5 304.5 1.44 119 38 35 14 90
3.5 2.51 2.86 0.69 78.6 72.3 2.1 5.6 120.8 320.0 1.29 118 39 34 14 92

4 2.69 2.99 0.94 107.7 55.8 2.2 6.1 147.2 464.5 1.85 156 46 31 14 88
4.5 2.96 3.27 1.32 151.1 48.5 2.3 7.5 220.3 851.8 3.51 131 66 21 11 76

5 2.84 3.59 1.06 121.4 25.3 3.1 10.6 393.3 1620.5 7.13 137 84 7 8 78

LNS
(without
Benders’

cuts)

3 2.36 2.61 0.28 32.0 139.4 0.6 3.8 100.7 242.4 1.04 0 41 28 4 95
3.5 2.43 2.68 0.47 53.1 128.5 0.5 3.5 104.5 276.5 1.03 0 52 25 3 93

4 2.46 2.89 0.89 101.1 123.3 0.5 3.2 107.7 311.3 1.01 0 45 30 4 91
4.5 2.76 3.12 0.75 85.7 96.7 1.0 5.7 149.7 513.5 3.73 0 70 22 2 83

5 2.82 3.43 1.09 124.0 66.9 1.7 9.6 323.4 1273.7 6.91 0 93 6 0 88

Random
Iterative

3 2.64 2.90 0.29 32.9 28.0 6.9 22.6 227.9 776.3 11.86 0 61 32 5 43
3.5 2.73 3.19 0.78 89.4 15.9 6.5 22.6 290.4 1084.8 14.10 0 87 11 1 41

4 2.83 3.44 1.06 120.6 7.5 6.1 23.9 388.8 1576.7 16.64 0 92 7 1 41
4.5 3.13 3.54 1.44 164.3 5.1 5.4 22.1 484.0 1975.8 18.91 0 94 5 0 35

5 3.47 3.78 1.21 138.3 3.8 4.8 18.8 492.7 2247.1 17.78 0 97 3 0 35
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Table 6: Average performance of the algorithms for different values of HWs.

Method HWs
(min)

Best PTT
gap (%)

PTT
gap (%)

PL
gap (%)

Var. PL
gap (%)

Alg
It.

Avg
Dive It.

Avg
Sep It.

Avg
CG It.

Avg
Columns

Avg
+rows (%)

Benders’
cuts

Avg RMP
time (%)

Avg PP
time (%)

Avg Sep
time (%)

Feasibility
rate (%)

LNS
(with

Benders’
cuts)

15 2.60 2.81 0.47 54.0 81.9 2.2 5.8 130.0 312.2 1.38 129 40 32 13 92
17 2.51 2.68 0.44 49.7 75.6 2.4 6.1 133.9 329.3 1.62 142 39 33 14 89
19 2.39 2.72 0.33 38.0 84.0 2.4 5.8 119.7 298.2 1.64 123 37 33 14 92
21 2.37 2.80 0.37 42.0 75.2 2.1 5.5 131.2 352.8 1.66 135 42 31 13 91
23 2.50 2.69 0.29 33.4 81.3 2.4 5.7 113.2 295.1 1.90 150 37 32 15 91
25 2.77 3.00 0.51 58.3 86.5 1.9 5.5 113.2 281.1 2.12 115 36 34 15 89
27 2.53 2.98 0.45 51.7 69.9 1.9 6.0 131.6 361.4 3.30 112 37 36 16 78

LNS
(without
Benders’

cuts)

15 2.26 2.61 0.24 27.7 142.2 0.6 3.9 98.7 238.3 1.03 0 41 28 4 94
17 2.45 2.65 0.28 32.3 139.3 0.7 3.9 102.6 245.4 1.22 0 41 29 5 92
19 2.49 2.72 0.37 42.6 136.9 0.6 3.7 104.9 246.2 1.27 0 41 29 5 90
21 2.49 2.89 0.39 44.3 126.1 0.8 4.5 110.5 278.3 2.00 0 41 32 6 88
23 2.37 2.68 0.21 24.3 155.3 0.4 3.3 85.2 210.5 1.38 0 37 27 7 92
25 2.62 2.88 0.44 50.3 132.3 0.5 3.9 106.8 251.3 1.99 0 39 29 8 91
27 2.71 2.96 0.57 65.1 133.3 0.5 3.6 94.8 236.2 2.29 0 38 29 9 88

Random
Iterative

15 2.64 2.87 0.39 44.6 28.0 6.9 22.5 222.6 763.0 11.92 0 61 31 5 43
17 2.86 3.04 0.55 62.5 24.3 7.0 23.4 229.5 835.1 13.01 0 84 13 2 53
19 2.86 3.15 0.47 53.2 24.6 6.7 21.4 215.9 777.6 12.76 0 79 18 3 31
21 2.94 3.21 0.50 56.8 19.3 7.1 23.6 288.3 989.1 14.52 0 87 11 1 35
23 2.75 3.01 0.48 54.3 23.1 6.1 19.8 202.9 798.0 13.80 0 84 13 2 49
25 2.95 3.22 0.67 76.4 16.3 6.3 20.7 278.7 1090.8 15.49 0 91 8 1 48
27 2.79 3.19 0.57 65.0 36.3 4.2 13.2 143.3 662.3 14.10 0 80 16 3 13
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Table 7: Average performance of the algorithms for different values of κ.

Method κ
(± min)

Best PTT
gap (%)

PTT
gap (%)

PL
gap (%)

Var. PL
gap (%)

Alg
It.

Avg
Dive It.

Avg
Sep It.

Avg
CG It.

Avg
Columns

Avg
+rows (%)

Benders’
cuts

Avg RMP
time (%)

Avg PP
time (%)

Avg Sep
time (%)

Feasibility
rate (%)

LNS
(with

Benders’
cuts)

1 2.43 2.71 0.39 39.0 93.6 2.2 5.7 116.3 283.1 1.33 162 41 26 16 90
1.5 2.52 2.79 0.42 48.3 76.9 2.3 5.9 127.5 315.3 1.36 129 38 34 13 92

2 2.30 2.73 0.30 36.1 72.6 2.1 5.4 121.5 311.5 1.17 117 34 39 13 92
2.5 2.40 2.77 0.47 56.7 57.6 2.6 6.3 148.5 359.3 1.47 127 34 43 13 90

3 2.53 2.80 0.30 36.4 50.3 2.9 7.0 154.0 402.7 1.55 124 36 44 12 92

LNS
(without
Benders’

cuts)

1 2.57 2.84 0.46 46.3 162.1 0.6 3.9 99.4 237.3 1.15 0 44 22 5 93
1.5 2.26 2.60 0.24 27.7 146.4 0.6 3.9 98.8 238.4 1.03 0 41 28 4 94

2 2.42 2.69 0.24 29.1 129.6 0.7 3.7 102.3 248.6 1.07 0 38 34 4 92
2.5 2.46 2.73 0.35 42.1 100.7 0.8 4.6 124.5 299.0 1.43 0 36 42 4 91

3 2.30 2.68 0.29 34.5 100.9 0.6 3.9 109.9 268.3 1.14 0 33 45 4 93

Random
Iterative

1 2.93 3.07 0.52 52.2 34.4 7.0 23.2 207.4 746.1 11.57 0 66 25 6 49
1.5 2.64 2.90 0.29 32.9 27.5 6.9 22.6 229.9 779.7 11.87 0 62 31 4 43

2 2.79 2.97 0.30 36.1 19.2 7.0 23.8 256.8 908.0 11.97 0 73 23 2 53
2.5 2.71 2.94 0.27 33.0 18.7 7.2 25.2 298.1 993.2 10.37 0 77 20 2 66

3 2.76 3.05 0.34 41.5 14.5 6.8 23.3 289.4 1000.9 13.70 0 70 27 2 50
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Table 8: Average solution quality over all instances

LNS (with
Benders’ cuts)

LNS (without
Benders’ cuts)

Random
iterative

LNS (with paths’ length
as acceptance criterion)

Passenger travel time 2.88 % 2.81 % 3.15 % 3.24 %
Paths’ length 0.57 % 0.45 % 0.62 % 0.33 %

Figure 12: Average solution values instances with different values of HWk in minutes.

Figure 13: Average solution values instances with different values of HWn in minutes.

5.2.3. Effect of Benders’ cuts
The addition of a limited amount of Benders’ cuts within the presented method does not have

a significant impact. Additional tests were carried out where the time limit is extended so that
more Benders’ cuts can be generated. Nevertheless, the solution method does not provide better
solutions. In fact, the quality decreases. It is observed that both generating more cuts or using
a larger value of α, increases the fractionality of the solutions and the complexity of the RMP.
Furthermore, solutions with a high number of columns with small coefficients hinder the dive
heuristic procedure.

Alternatively, in order to assess the potential impact of the Bender cuts, we solve the root node
adding all violated Benders’ cuts and compare the solution value with the manual lower bound
mentioned at the end of Section 4.6. For this experiment, the objective function is modified such
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Figure 14: Average solution values instances with different values of HWs in minutes.

Figure 15: Average solution values instances with different values of κ in ± minutes.

that only passenger travel time is considered. This is tested on the instance with base parameter
values considering the network with station clusters. The results are summarized in Table 9
where the first column shows the optimality gap from the precomputed manual lower bound to
the best known integer solution. The second column shows the optimality gap from the root node
solution solved. The number of cuts and computational time is shown in the last two columns
respectively. The results indicate that the Benders’ cuts are able to provide a stronger lower
bound. It should be noted that solving the entire branch-and-bound tree adding all the necessary
violated Benders’ cuts guarantees converging to the optimal solution. This suggest that addition
of Benders’ cuts may be more interesting in an exact method for the integrated model compared
to in a heuristic as proposed here. It is clear, however, that such an exact method only could solve
much smaller instances compared to those considered in this paper.

Table 9: Lower bound (LB) comparison for the base case instance with cluster stations.

Manual lower bound LB with Benders’ cuts Benders’ cuts Time (s)
0.72 % 0.61 % 926 5885
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6. Conclusion

As future work, it would be interesting to study how to decrease the time for solving the LP
relaxation of the master problem as this can become quite excessive for the more constrained
instances. One may attempt to 1) leave the headway constraints out of the initial formulation and
add the violated ones by separation or 2) attempt to stabilize the dual variables in the column
generation algorithm (see e.g. Du Merle et al. (1999) or Oukil et al. (2007)).

Computational results showed that the addition of Benders’ cuts in the LNS did not improve
the performance of the heuristic even though the cuts allow us to fully integrate the passenger
travel time objective in the mathematical model that is the foundation of the LNS heuristic. It is
possible that further work could change this conclusion. If the time for solving the passenger flow
sub-problem could be reduced and convergence of the Benders’ algorithm could be improved,
such that fewer Benders’ cuts are needed then the approach may be more competitive. Improved
convergence of the Benders’ algorithm could perhaps be achieved using generic speed-up tech-
niques as those suggested in Magnanti and Wong (1981), Papadakos (2008) and Fischetti et al.
(2017).

When looking at the number of columns needed per iteration, it is also interesting to look
from which lines the columns mainly come from. In average, 93% of all the columns generated
belong to lines using the quadruple-track segment. Allowing two routes for the trains doubles the
number of possible columns that can be generated. It should also be noted that 32 % of the total
amount of columns belong to the two lines running until Kalundborg. This is related to the fact
that at the single-track segment of this corridor, is the only place where a crossing between trains
of different lines can occur. In order to cross, one of the trains needs to dwell for three minutes
in one of the stations resulting in a poor path length. As the crossing constraints are added by
separation, this results in a larger amount of columns generated.

The model is able to route the passengers realistically. This is analyzed using graphical
tools such as the one shown in Figure A.17 which shows the passenger flow between trains at
København H for an example solution. Nevertheless, a more realistic routing of the passengers
in the most congested areas can help to have a complete perspective of the trips of the passengers
and the occupancy of the trains. This can be further improved by taking train capacity into
account (Rezanova, 2015) or achieving a more accurate estimation of the passenger demand.

Although the fixed running times between stations simulate realistic cases to a large extent,
considering variable running times at the track segments can increase significantly the solution
space. However, the complexity of the model would increase accordingly. Also, considering
different types of headway along the network allows a better utilization of the track capacity as
more trains can be scheduled per corridor (Liu and Han, 2017).

Different graphical tools have been used to analyze the potential additional conflicts of a
timetable such as the one in Figure A.16 which shows an example graphic timetable for the
north-western corridor between København H and Kalundborg. Routing the trains at a more
detailed level at some stations can allow having completely conflict-free solutions in the network.
Currently, feasibility issues may arise from the model due to track-crossing conflicts at some
stations where corridors join. This can be solved by adding additional graph nodes to model the
track junctions. Likewise, turnaround times for trains at the end of stations can be enforced by
removing the conflicting arcs in the graph. This can potentially lead to a better utilization of the
rolling stock.

In conclusion, this paper aims at optimizing the railway timetable generation process from
a passenger perspective. Solution methods have been implemented to solve the network for
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Regional and InterCity trains in Zealand. The methods are based on a graph formulation that
takes advantage of the symmetric timetabling strategy and the assumed fixed train running times
between stations. As a result, all the required train paths for a line in a cycle time of one hour
can be computed by a single shortest path. Furthermore, the algorithms rely mainly on both
column generation and constraint separation techniques. This, combined with Benders’ cuts that
guide the routing of the passengers results in an algorithm for railway timetabling that optimizes
passenger travel time. The methods have been shown to find good solutions to the network in a
relatively fast time. The minimum headway can be easily increased along the network, achieving
more robust timetables, without a significant detriment in time or solution quality.

Last but not least, the graph representation of the problem has the potential to easily model
parts of the network in more detail such as track-crossing conflicts or platform assignment. The
methods can potentially be improved and implemented as a useful tool in the planning process
of a train operating company.
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Table A.10: Average performance of LNS method with paths’ length as acceptance criterion.

HWk

(min)
Best PTT
gap (%)

PTT
gap (%)

PL
gap (%)

Var. PL
gap (%)

Alg
It.

Avg
Dive It.

Avg
Sep It.

Avg
CG It.

Avg
Columns

Avg
+rows (%)

Benders
cuts

Avg RMP
time (%)

Avg PP
time (%)

Avg Sep
time (%)

Feasibility
rate (%)

3 2.59 3.10 0.17 18.86 143.7 0.6 3.7 97.7 242.7 1.01 0 40 29 4 93
4 2.87 3.21 0.29 32.57 146.5 0.6 3.5 96.8 251.1 0.83 0 40 29 4 92
5 2.84 3.28 0.35 40.00 166.5 0.5 3.1 76.4 225.8 0.60 0 37 28 4 93
6 3.08 3.43 0.59 67.14 167.0 0.5 2.9 75.5 236.2 0.48 0 39 27 4 91
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PTT
gap (%)
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gap (%)
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time (%)
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time (%)

Avg Sep
time (%)
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rate (%)

3 2.59 3.10 0.17 18.9 144.1 0.6 3.7 98.0 243.5 1.01 0 40 29 4 93
3.5 2.71 3.13 0.23 26.3 148.3 0.5 3.2 92.9 248.8 0.93 0 40 29 4 92

4 2.72 3.18 0.32 36.9 143.5 0.4 2.9 87.3 253.9 0.80 0 40 29 4 94
4.5 3.04 3.61 0.75 86.0 89.1 0.7 4.3 124.7 417.6 2.35 0 58 28 3 87

5 3.05 3.62 1.08 123.5 51.0 1.9 9.8 311.7 1240.4 7.70 0 91 7 1 71
HWs
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rate (%)

15 2.59 3.10 0.17 18.9 140.8 0.6 3.7 97.7 242.8 1.01 0 40 29 4 93
17 2.57 3.06 0.19 22.0 141.2 0.6 3.9 95.9 228.9 1.20 0 39 29 5 92
19 2.89 3.24 0.20 22.3 137.3 0.5 3.5 100.6 247.5 1.37 0 40 29 5 92
21 2.98 3.34 0.33 38.0 127.8 0.8 4.5 106.9 268.4 2.01 0 40 32 6 87
23 2.75 3.22 0.17 19.1 147.8 0.5 3.3 89.1 221.3 1.44 0 37 28 7 93
25 3.09 3.28 0.35 39.4 128.6 0.5 3.7 106.5 260.0 2.06 0 39 30 8 90
27 2.79 3.44 0.52 59.4 124.6 0.6 3.8 101.1 251.1 2.49 0 38 30 9 88

κ
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Avg PP
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rate (%)

1 2.68 3.31 0.26 26.2 158.7 0.6 3.8 96.8 230.4 1.11 0 43 22 5 92
1.5 2.59 3.10 0.17 18.9 140.0 0.6 3.7 98.2 243.6 1.01 0 40 29 4 93

2 2.85 3.19 0.23 27.3 128.4 0.6 3.6 98.8 241.8 0.99 0 37 35 4 93
2.5 2.75 3.08 0.20 23.6 107.4 0.8 4.3 107.5 263.5 1.30 0 34 41 4 93

3 2.34 3.00 0.14 17.3 107.0 0.6 3.7 98.9 255.0 1.01 0 31 44 4 93
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Figure A.16: Timetable example for the lines running through the North-West corridor
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Figure A.17: Example diagram of amount of passengers transferring between trains at København H during a rush hour
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